Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 378(2165): 20180425, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31902339

RESUMEN

The subduction of seamounts and ridge features at convergent plate boundaries plays an important role in the deformation of the overriding plate and influences geochemical cycling and associated biological processes. Active serpentinization of forearc mantle and serpentinite mud volcanism on the Mariana forearc (between the trench and active volcanic arc) provides windows on subduction processes.  Here, we present (1) the first observation of an extensive exposure of an undeformed Cretaceous seamount currently being subducted at the Mariana Trench inner slope; (2) vertical deformation of the forearc region related to subduction of Pacific Plate seamounts and thickened crust; (3) recovered Ocean Drilling Program and International Ocean Discovery Program cores of serpentinite mudflows that confirm exhumation of various Pacific Plate lithologies, including subducted reef limestone; (4) petrologic, geochemical and paleontological data from the cores that show that Pacific Plate seamount exhumation covers greater spatial and temporal extents; (5) the inference that microbial communities associated with serpentinite mud volcanism may also be exhumed from the subducted plate seafloor and/or seamounts; and (6) the implications for effects of these processes with regard to evolution of life. This article is part of a discussion meeting issue 'Serpentine in the Earth system'.


Asunto(s)
Minerales/química , Origen de la Vida , Agua de Mar/química , Erupciones Volcánicas
2.
Nature ; 461(7267): 1114-7, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19847262

RESUMEN

Seismic anisotropy is a powerful tool for detecting the geometry and style of deformation in the Earth's interior, as it primarily reflects the deformation-induced preferred orientation of anisotropic crystals. Although seismic anisotropy in the upper mantle is generally attributed to the crystal-preferred orientation of olivine, the strong trench-parallel anisotropy (delay time of one to two seconds) observed in several subduction systems is difficult to explain in terms of olivine anisotropy, even if the entire mantle wedge were to act as an anisotropic source. Here we show that the crystal-preferred orientation of serpentine, the main hydrous mineral in the upper mantle, can produce the strong trench-parallel seismic anisotropy observed in subduction systems. High-pressure deformation experiments reveal that the serpentine c-axis tends to rotate to an orientation normal to the shear plane during deformation; consequently, seismic velocity propagating normal to the shear plane (plate interface) is much slower than that in other directions. The seismic anisotropy estimated for deformed serpentine aggregates is an order of magnitude greater than that for olivine, and therefore the alignment of serpentine in the hydrated mantle wedge results in a strong trench-parallel seismic anisotropy in the case of a steeply subducting slab. This hypothesis is also consistent with the presence of a hydrous phase in the mantle wedge, as inferred from anomalously low seismic-wave velocities.

3.
Proc Natl Acad Sci U S A ; 109(8): 2831-5, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22323611

RESUMEN

Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures and vent communities occur in different tectonic settings. The discovery of the Lost City hydrothermal field in the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H(2)- and CH(4)-rich fluids and associated carbonate chimneys, as well as in the biological communities supported in highly reduced, alkaline environments. Abundant vesicomyid clam communities associated with a serpentinite-hosted hydrothermal vent system in the southern Mariana forearc were discovered during a DSV Shinkai 6500 dive in September 2010. We named this system the "Shinkai Seep Field (SSF)." The SSF appears to be a serpentinite-hosted ecosystem within a forearc (convergent margin) setting that is supported by fault-controlled fluid pathways connected to the decollement of the subducting slab. The discovery of the SSF supports the prediction that serpentinite-hosted vents may be widespread on the ocean floor. The discovery further indicates that these serpentinite-hosted low-temperature fluid vents can sustain high-biomass communities and has implications for the chemical budget of the oceans and the distribution of abyssal chemosynthetic life.


Asunto(s)
Ecosistema , Respiraderos Hidrotermales , Animales , Bivalvos/genética , Buceo , Geografía , Sedimentos Geológicos/química , Guam , Marcaje Isotópico , Datos de Secuencia Molecular , Filogenia
4.
Sci Rep ; 13(1): 6648, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095126

RESUMEN

X-ray computed tomography (X-ray CT) has been widely used in the earth sciences, as it is non-destructive method for providing us the three-dimensional structures of rocks and sediments. Rock samples essentially possess various-scale structures, including millimeters to centimeter scales of layering and veins to micron-meter-scale mineral grains and porosities. As the limitations of the X-ray CT scanner, sample size and scanning time, it is not easy to extract information on multi-scale structures, even when hundreds meter scale core samples were obtained during drilling projects. As the first step to overcome such barriers on scale-resolution problems, we applied the super-resolution technique by sparse representation and dictionary-learning to X-ray CT images of rock core sample. By applications to serpentinized peridotite, which records the multi-stage water-rock interactions, we reveal that both grain-shapes, veins and background heterogeneities of high-resolution images can be reconstructed through super-resolution. We also show that the potential effectiveness of sparse super-resolution for feature extraction of complicated rock textures.

5.
Sci Rep ; 7(1): 13870, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29066745

RESUMEN

Recent geophysical surveys indicate that hydration (serpentinization) of oceanic mantle is related to outer-rise faulting prior to subduction. The serpentinization of oceanic mantle influences the generation of intermediate-depth earthquakes and subduction water flux, thereby promoting arc volcanism. Since the chemical reactions that produce serpentinite are geologically rapid at low temperatures, the flux of water delivery to the reaction front appears to control the lateral extent of serpentinization. In this study, we measured the permeability of low-temperature serpentinites composed of lizardite and chrysotile, and calculated the lateral extent of serpentinization along an outer-rise fault based on Darcy's law. The experimental results indicate that serpentinization extends to a region several hundred meters wide in the direction normal to the outer-rise fault in the uppermost oceanic mantle. We calculated the global water flux carried by serpentinized oceanic mantle ranging from 1.7 × 1011 to 2.4 × 1012 kg/year, which is comparable or even higher than the water flux of hydrated oceanic crust.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA