Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
FASEB J ; 38(16): e70015, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39212294

RESUMEN

Pulmonary hypertension (PH) is a chronic and progressive disease with significant morbidity and mortality. It is characterized by remodeled pulmonary vessels associated with perivascular and intravascular accumulation of inflammatory cells. Although there is compelling evidence that bone marrow-derived cells, such as macrophages and T cells, cluster in the vicinity of pulmonary vascular lesions in humans and contribute to PH development in different animal models, the role of dendritic cells in PH is less clear. Dendritic cells' involvement in PH is likely since they are responsible for coordinating innate and adaptive immune responses. We hypothesized that dendritic cells drive hypoxic PH. We demonstrate that a classical dendritic cell (cDC) subset (cDC2) is increased and activated in wild-type mouse lungs after hypoxia exposure. We observe significant protection after the depletion of cDCs in ZBTB46 DTR chimera mice before hypoxia exposure and after established hypoxic PH. In addition, we find that cDC depletion is associated with a reduced number of two macrophage subsets in the lung (FolR2+ MHCII+ CCR2+ and FolR2+ MHCII+ CCR2-). We found that depleting cDC2s, but not cDC1s, was protective against hypoxic PH. Finally, proof-of-concept studies in human lungs show increased perivascular cDC2s in patients with Idiopathic Pulmonary Arterial Hypertension (IPAH). Our data points to an essential role of cDCs, particularly cDC2s, in the pathophysiology of experimental PH.


Asunto(s)
Células Dendríticas , Hipertensión Pulmonar , Hipoxia , Ratones Endogámicos C57BL , Animales , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Células Dendríticas/inmunología , Ratones , Humanos , Masculino , Pulmón/patología , Pulmón/metabolismo , Pulmón/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Femenino
2.
Physiol Genomics ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311838

RESUMEN

The extracellular isoform of superoxide dismutase (SOD3) is decreased in patients and animals with pulmonary hypertension (PH). The human R213G single nucleotide polymorphism (SNP) in SOD3 causes its release from tissue extracellular matrix (ECM) into extracellular fluids, without modulating enzyme activity, increasing cardiovascular disease risk in humans and exacerbating chronic hypoxic PH in mice. Given the importance of interstitial macrophages (IM) to PH pathogenesis, this study aimed to determine whether R213G SOD3 increases IM accumulation and alters IM reprogramming in response to hypoxia. R213G mice and wild-type (WT) controls were exposed to hypobaric hypoxia for 4 or 14 days compared to normoxia. Flow cytometry demonstrated a transient increase in IMs at day 4 in both strains. Contrary to our hypothesis, the R213G SNP did not augment IM accumulation. To determine strain differences in the IM reprogramming response to hypoxia, we performed RNAsequencing on IMs isolated at each time point. We found that IMs from R213G mice exposed to hypoxia activated ECM-related pathways and a combination of alternative macrophage and proinflammatory signaling. Furthermore, when compared to WT responses, IMs from R213G mice lacked metabolic remodeling and demonstrated a blunted anti-inflammatory response between the early (day 4) and later (day 14) time points. We confirmed metabolic responses using Agilent Seahorse assays whereby WT, but not R213G, IMs upregulated glycolysis at day 4 that returned to baseline at day 14. Finally, we identify differential regulation of several redox-sensitive upstream regulators that could be investigated in future studies.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39254088

RESUMEN

Schistosomiasis-induced pulmonary hypertension (PH) presents a significant global health burden, yet the underlying mechanisms remain poorly understood. Here, we investigate the involvement of platelets and the complement system in the initiation events leading to Schistosoma-induced PH. We demonstrate that Schistosoma exposure leads to thrombocytopenia, platelet accumulation in the lung, and platelet activation. Additionally, we observed increased plasma complement anaphylatoxins C3a and C5a, indicative of complement system activation, and elevated platelet expression of C1q, C3, decay activating factor (DAF), and complement C3a and C5a receptors. Our findings suggest the active involvement of platelets in responding to complement system signals induced by Schistosoma exposure and form the basis for future mechanistic studies on how complement may regulate platelet activation and promote the development of Schistosoma-induced PH.

4.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273153

RESUMEN

BACKGROUND: Schistosomiasis is a parasitic infection that can cause pulmonary hypertension (PH). Th2 CD4 T cells are necessary for experimental Schistosoma-PH. However, if T cells migrate to the lung to initiate, the localized inflammation that drives vascular remodeling and PH is unknown. METHODS: Mice were sensitized to Schistosoma mansoni eggs intraperitoneally and then challenged using tail vein injection. FTY720 was administered, which blocks lymphocyte egress from lymph nodes. T cells were quantified using flow cytometry, PH severity via heart catheterization, and cytokine concentration through ELISA. RESULTS: FTY720 decreased T cells in the peripheral blood, and increased T cells in the mediastinal lymph nodes. However, FTY720 treatment resulted in no change in PH or type 2 inflammation severity in mice sensitized and challenged with S. mansoni eggs, and the number of memory and effector CD4 T cells in the lung parenchyma was also unchanged. Notably, intraperitoneal Schistosoma egg sensitization alone resulted in a significant increase in intravascular lymphocytes and T cells, including memory T cells, although there was no significant change in parenchymal cell density, IL-4 or IL-13 expression, or PH. CONCLUSION: Blocking T cell migration did not suppress PH following Schistosoma egg challenge. Memory CD4 T cells, located in the lung intravascular space following egg sensitization, appear sufficient to cause type 2 inflammation and PH.


Asunto(s)
Hipertensión Pulmonar , Pulmón , Schistosoma mansoni , Animales , Ratones , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/parasitología , Hipertensión Pulmonar/inmunología , Pulmón/parasitología , Pulmón/inmunología , Pulmón/patología , Schistosoma mansoni/inmunología , Clorhidrato de Fingolimod/farmacología , Femenino , Linfocitos T CD4-Positivos/inmunología , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/complicaciones , Esquistosomiasis mansoni/patología , Modelos Animales de Enfermedad , Interleucina-4/metabolismo , Citocinas/metabolismo , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Esquistosomiasis/complicaciones , Esquistosomiasis/inmunología , Esquistosomiasis/parasitología
5.
Clin Sci (Lond) ; 137(8): 617-631, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37014925

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition. METHODS: Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis. RESULTS: Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition. CONCLUSIONS: Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.


Asunto(s)
Hipertensión Pulmonar , Fibrosis Pulmonar , Esquistosomiasis , Humanos , Animales , Ratones , Hipertensión Pulmonar/etiología , Fibrosis Pulmonar/complicaciones , Schistosoma mansoni , Pulmón/patología , Esquistosomiasis/complicaciones , Esquistosomiasis/patología , Fibrosis
6.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L355-L371, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35763400

RESUMEN

Dysregulated metabolism characterizes both animal and human forms of pulmonary hypertension (PH). Enzymes involved in fatty acid metabolism have previously not been assessed in human pulmonary arteries affected by pulmonary arterial hypertension (PAH), and how inhibition of fatty acid oxidation (FAO) may attenuate PH remains unclear. Fatty acid metabolism gene transcription was quantified in laser-dissected pulmonary arteries from 10 explanted lungs with advanced PAH (5 idiopathic, 5 associated with systemic sclerosis), and 5 donors without lung diseases. Effects of oxfenicine, a FAO inhibitor, on female Sugen 5416-chronic hypoxia (SuHx) rats were studied in vivo using right heart catheterization, and ex vivo using perfused lungs and pulmonary artery ring segments. The impact of pharmacologic (oxfenicine) and genetic (carnitine palmitoyltransferase 1a heterozygosity) FAO suppression was additionally probed in mouse models of Schistosoma and hypoxia-induced PH. Potential mechanisms underlying FAO-induced PH pathogenesis were examined by quantifying ATP and mitochondrial mass in oxfenicine-treated SuHx pulmonary arterial cells, and by assessing pulmonary arterial macrophage infiltration with immunohistochemistry. We found upregulated pulmonary arterial transcription of 26 and 13 FAO genes in idiopathic and systemic sclerosis-associated PAH, respectively. In addition to promoting de-remodeling of pulmonary arteries in SuHx rats, oxfenicine attenuated endothelin-1-induced vasoconstriction. FAO inhibition also conferred modest benefit in the two mouse models of PH. Oxfenicine increased mitochondrial mass in cultured rat pulmonary arterial cells, and decreased the density of perivascular macrophage infiltration in pulmonary arteries of treated SuHx rats. In summary, FAO inhibition attenuated experimental PH, and may be beneficial in human PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Esclerodermia Sistémica , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Femenino , Humanos , Hipertensión Pulmonar/patología , Hipoxia/metabolismo , Ratones , Arteria Pulmonar/metabolismo , Ratas , Esclerodermia Sistémica/patología , Remodelación Vascular
7.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L58-L68, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35608266

RESUMEN

Few studies have examined lung interstitial macrophage (IM) molecular phenotypes after being exposed to hypoxia in vivo at the single-cell level, even though macrophages contribute to hypoxic pulmonary hypertension (PH). We aimed to determine IM diversity and its association with hypoxia-induced PH. We hypothesized that integrating single-cell RNA sequencing (scRNAseq) and binary hierarchal clustering (BHC) could resolve IM heterogeneity under normal homeostatic conditions and changes induced by hypoxia exposure. Cx3cr1GFP/+ reporter mice were exposed to normoxic conditions (∼21% [Formula: see text]) or exposed to 1 day (D1) or 7 days (D7) of hypoxia (∼10% [Formula: see text]). We used flow cytometry to isolate Cx3cr1+ IMs and the 10X Genomics platform for scRNAseq, Cell Ranger, Seurat, ClusterMap, monocle, ingenuity pathway analysis, and Fisher's exact test (q value < 0.05) for functional investigations. n = 374 (normoxia), n = 2,526 (D1), and n = 1,211 (D7) IMs were included in the analyses. We identified three normoxia-related cell types, five hypoxia-associated cell types that emerged at D1, and three that appeared at D7. We describe the existence of a putative resident trained innate IM, which is present in normoxia, transiently depleted at D1, and recovered after 7 days of sustained hypoxia. We also define a rare putative pathogenic population associated with transcripts implicated in PH development that emerges at D7. In closing, we describe the successful integration of BHC with scRNAseq to determine IM heterogeneity and its association with PH. These results shed light on how resident-trained innate IMs become more heterogeneous but ultimately accustomed to hypoxia.


Asunto(s)
Hipertensión Pulmonar , Hipoxia , Animales , Análisis por Conglomerados , Hipertensión Pulmonar/metabolismo , Hipoxia/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Ratones , Análisis de Secuencia de ARN
8.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L675-L685, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34346780

RESUMEN

Humans and animals with pulmonary hypertension (PH) show right ventricular (RV) capillary growth, which positively correlates with overall RV hypertrophy. However, molecular drivers of RV vascular augmentation in PH are unknown. Prolyl hydroxylase (PHD2) is a regulator of hypoxia-inducible factors (HIFs), which transcriptionally activates several proangiogenic genes, including the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We hypothesized that a signaling axis of PHD2-HIF1α-PFKFB3 contributes to adaptive coupling between the RV vasculature and tissue volume to maintain appropriate vascular density in PH. We used design-based stereology to analyze endothelial cell (EC) proliferation and the absolute length of the vascular network in the RV free wall, relative to the tissue volume in mice challenged with hypoxic PH. We observed increased RV EC proliferation starting after 6 h of hypoxia challenge. Using parabiotic mice, we found no evidence for a contribution of circulating EC precursors to the RV vascular network. Mice with transgenic deletion or pharmacological inhibition of PHD2, HIF1α, or PFKFB3 all had evidence of impaired RV vascular adaptation following hypoxia PH challenge. PHD2-HIF1α-PFKFB3 contributes to structural coupling between the RV vascular length and tissue volume in hypoxic mice, consistent with homeostatic mechanisms that maintain appropriate vascular density. Activating this pathway could help augment the RV vasculature and preserve RV substrate delivery in PH, as an approach to promote RV function.


Asunto(s)
Vasos Coronarios/crecimiento & desarrollo , Ventrículos Cardíacos/patología , Hipertensión Pulmonar/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Fosfofructoquinasa-2/metabolismo , Anaerobiosis/fisiología , Animales , Células Endoteliales/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica/fisiología , Transducción de Señal/fisiología
9.
Am J Respir Cell Mol Biol ; 59(4): 479-489, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29851508

RESUMEN

Optimal right ventricular (RV) function in pulmonary hypertension (PH) requires structural and functional coupling between the RV cardiomyocyte and its adjacent capillary network. Prior investigations have indicated that RV vascular rarefaction occurs in PH, which could contribute to RV failure by reduced delivery of oxygen or other metabolic substrates. However, it has not been determined if rarefaction results from relative underproliferation in the setting of tissue hypertrophy or from actual loss of vessels. It is also unknown if rarefaction results in inadequate substrate delivery to the RV tissue. In the present study, PH was induced in rats by SU5416-hypoxia-normoxia exposure. The vasculature in the RV free wall was assessed using stereology. Steady-state metabolomics of the RV tissue was performed by mass spectrometry. Complementary studies were performed in hypoxia-exposed mice and rats. Rats with severe PH had evidence of RV failure by decreased cardiac output and systemic hypotension. By stereology, there was significant RV hypertrophy and increased total vascular length in the RV free wall in close proportion, with evidence of vessel proliferation but no evidence of endothelial cell apoptosis. There was a modest increase in the radius of tissue served per vessel, with decreased arterial delivery of metabolic substrates. Metabolomics revealed major metabolic alterations and metabolic reprogramming; however, metabolic substrate delivery was functionally preserved, without evidence of either tissue hypoxia or depletion of key metabolic substrates. Hypoxia-treated rats and mice had similar but milder alterations. There is significant homeostatic vascular adaptation in the right ventricle of rodents with PH.


Asunto(s)
Adaptación Fisiológica , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/fisiopatología , Animales , Apoptosis , Proliferación Celular , Células Endoteliales/metabolismo , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Hipertensión Pulmonar/patología , Hipoxia/patología , Hipoxia/fisiopatología , Indoles , Ratones Endogámicos C57BL , Pirroles , Ratas Sprague-Dawley
14.
Am J Respir Crit Care Med ; 192(8): 998-1008, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26192556

RESUMEN

RATIONALE: The etiology of schistosomiasis-associated pulmonary arterial hypertension (PAH), a major cause of PAH worldwide, is poorly understood. Schistosoma mansoni exposure results in prototypical type-2 inflammation. Furthermore, transforming growth factor (TGF)-ß signaling is required for experimental pulmonary hypertension (PH) caused by Schistosoma exposure. OBJECTIVES: We hypothesized type-2 inflammation driven by IL-4 and IL-13 is necessary for Schistosoma-induced TGF-ß-dependent vascular remodeling. METHODS: Wild-type, IL-4(-/-), IL-13(-/-), and IL-4(-/-)IL-13(-/-) mice (C57BL6/J background) were intraperitoneally sensitized and intravenously challenged with S. mansoni eggs to induce experimental PH. Right ventricular catheterization was then performed, followed by quantitative analysis of the lung tissue. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH was also systematically analyzed. MEASUREMENTS AND MAIN RESULTS: Mice with experimental Schistosoma-induced PH had evidence of increased IL-4 and IL-13 signaling. IL-4(-/-)IL-13(-/-) mice, but not single knockout IL-4(-/-) or IL-13(-/-) mice, were protected from Schistosoma-induced PH, with decreased right ventricular pressures, pulmonary vascular remodeling, and right ventricular hypertrophy. IL-4(-/-)IL-13(-/-) mice had less pulmonary vascular phospho-signal transducer and activator of transcription 6 (STAT6) and phospho-Smad2/3 activity, potentially caused by decreased TGF-ß activation by macrophages. In vivo treatment with a STAT6 inhibitor and IL-4(-/-)IL-13(-/-) bone marrow transplantation also protected against Schistosoma-PH. Lung tissue from patients with schistosomiasis-associated and connective tissue disease-associated PAH had evidence of type-2 inflammation. CONCLUSIONS: Combined IL-4 and IL-13 deficiency is required for protection against TGF-ß-induced pulmonary vascular disease after Schistosoma exposure, and targeted inhibition of this pathway is a potential novel therapeutic approach for patients with schistosomiasis-associated PAH.


Asunto(s)
Hipertensión Pulmonar/inmunología , Interleucina-13/inmunología , Interleucina-4/inmunología , Macrófagos/inmunología , Esquistosomiasis mansoni/inmunología , Animales , Trasplante de Médula Ósea , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/metabolismo , Humanos , Hipertensión Pulmonar/etiología , Inflamación , Péptidos y Proteínas de Señalización Intercelular/inmunología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interleucina-13/genética , Interleucina-4/genética , Subunidad alfa del Receptor de Interleucina-4/inmunología , Subunidad alfa del Receptor de Interleucina-4/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Factor de Transcripción STAT6/inmunología , Factor de Transcripción STAT6/metabolismo , Schistosoma mansoni , Esquistosomiasis mansoni/complicaciones , Proteína Smad2/inmunología , Proteína Smad2/metabolismo , Proteína smad3/inmunología , Proteína smad3/metabolismo , Células TH1/inmunología , Células Th17/inmunología , Factor de Crecimiento Transformador beta/inmunología , Remodelación Vascular
15.
Am J Physiol Lung Cell Mol Physiol ; 309(5): L435-40, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26115672

RESUMEN

In severe pulmonary hypertension (SPH), prior studies have shown an increase in right ventricle (RV) uptake of glucose, but it is unclear whether there is a change in the relative utilization of fatty acids. We hypothesized that in the RV in SPH, as in left ventricular (LV) failure, there is altered substrate utilization, with increased glucose uptake and decreased fatty acid uptake. SPH was induced in rats by treatment with the VEGF receptor inhibitor SU5416 and 3 wk of hypoxia (10% FiO2 ), followed by an additional 4 wk of normoxia (SU-Hx group). Control rats were treated with carboxymethylcellulose vehicle and 7 wk of normoxia (CMC-Nx group). The rodents then underwent positron emission tomography with sequential administration of two radiotracers, 2-deoxy-2-[(18)F]fluoroglucose ((18)F-FDG) and 14-(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)F-FTHA), analogs of glucose and fatty acid, respectively. Five CMC-Nx and 3 SU-Hx rats completed the entire experimental protocol. In the RV, there was a mild increase in (18)F-FDG uptake (1.35-fold, P = 0.085) and a significant decrease in (18)F-FTHA uptake (-2.1-fold, P < 0.05) in the SU-Hx rats relative to the CMC-Nx rats. In the LV, SU-Hx rats had less uptake of both radiotracers compared with CMC-Nx rats. Less RV fatty acid uptake in SPH was corroborated by decreased fatty acid transporters and enzymes in the RV tissue, and specifically a decrease in lipoprotein lipase. In the RV in rats with SPH, there is a major shift in metabolic substrate preference, largely due to decreased fatty acid uptake.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Hipertensión Pulmonar/fisiopatología , Hipoxia/fisiopatología , Animales , Transporte Biológico , Proteínas de Transporte de Ácidos Grasos/metabolismo , Femenino , Indoles/farmacología , Lipoproteína Lipasa/metabolismo , Oxidación-Reducción , Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/farmacología , Radiofármacos , Ratas , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
17.
Pulm Circ ; 14(1): e12336, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38312832

RESUMEN

Whether all Schistosoma species cause pulmonary hypertension (PH) is unclear. Experimentally exposing mice to Schistosoma haematobium eggs caused PH, which was less severe than that induced by S. mansoni exposure. These findings align with the relatively uncommon reports of pulmonary arterial hypertension associated with S. haematobium.

18.
Front Immunol ; 15: 1372959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690277

RESUMEN

Introduction: Hypoxia is a common pathological driver contributing to various forms of pulmonary vascular diseases leading to pulmonary hypertension (PH). Pulmonary interstitial macrophages (IMs) play pivotal roles in immune and vascular dysfunction, leading to inflammation, abnormal remodeling, and fibrosis in PH. However, IMs' response to hypoxia and their role in PH progression remain largely unknown. We utilized a murine model of hypoxia-induced PH to investigate the repertoire and functional profiles of IMs in response to acute and prolonged hypoxia, aiming to elucidate their contributions to PH development. Methods: We conducted single-cell transcriptomic analyses to characterize the repertoire and functional profiles of murine pulmonary IMs following exposure to hypobaric hypoxia for varying durations (0, 1, 3, 7, and 21 days). Hallmark pathways from the mouse Molecular Signatures Database were utilized to characterize the molecular function of the IM subpopulation in response to hypoxia. Results: Our analysis revealed an early acute inflammatory phase during acute hypoxia exposure (Days 1-3), which was resolved by Day 7, followed by a pro-remodeling phase during prolonged hypoxia (Days 7-21). These phases were marked by distinct subpopulations of IMs: MHCIIhiCCR2+EAR2+ cells characterized the acute inflammatory phase, while TLF+VCAM1hi cells dominated the pro-remodeling phase. The acute inflammatory phase exhibited enrichment in interferon-gamma, IL-2, and IL-6 pathways, while the pro-remodeling phase showed dysregulated chemokine production, hemoglobin clearance, and tissue repair profiles, along with activation of distinct complement pathways. Discussion: Our findings demonstrate the existence of distinct populations of pulmonary interstitial macrophages corresponding to acute and prolonged hypoxia exposure, pivotal in regulating the inflammatory and remodeling phases of PH pathogenesis. This understanding offers potential avenues for targeted interventions, tailored to specific populations and distinct phases of the disease. Moreover, further identification of triggers for pro-remodeling IMs holds promise in unveiling novel therapeutic strategies for pulmonary hypertension.


Asunto(s)
Perfilación de la Expresión Génica , Hipertensión Pulmonar , Hipoxia , Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Hipoxia/metabolismo , Hipoxia/inmunología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/genética , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Masculino , Pulmón/inmunología , Pulmón/patología , Pulmón/metabolismo
19.
Front Immunol ; 15: 1372957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779688

RESUMEN

Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.


Asunto(s)
Hipertensión Pulmonar , Macrófagos , Animales , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/parasitología , Hipertensión Pulmonar/inmunología , Hipertensión Pulmonar/patología , Ratones , Macrófagos/inmunología , Macrófagos/parasitología , Fenotipo , Schistosoma mansoni/inmunología , Ratones Endogámicos C57BL , Esquistosomiasis/inmunología , Esquistosomiasis/complicaciones , Esquistosomiasis/parasitología , Modelos Animales de Enfermedad , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/complicaciones , Esquistosomiasis mansoni/patología , Trombospondina 1/genética , Trombospondina 1/metabolismo , Monocitos/inmunología , Receptores CCR2/genética , Receptores CCR2/metabolismo , Femenino , Schistosoma/inmunología , Schistosoma/fisiología , Pulmón/inmunología , Pulmón/parasitología , Pulmón/patología
20.
Biosci Rep ; 43(11)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-37975243

RESUMEN

Acute high-altitude (HA) exposure can induce several pathologies. Dexamethasone (DEX) can be taken prophylactically to prevent HA disease, but the mechanism by which it acts in this setting is unclear. We studied the transcriptome of peripheral blood mononuclear cells (PBMCs) from 16 subjects at low altitude (LA, 225 m) and then 3 days after acute travel to HA (3500 m) during the India-Leh-Dexamethasone-Expedition-2020 (INDEX2020). Half of the participants received oral DEX prophylaxis 4 mg twice daily in an unblinded manner, starting 1 day prior to travel to HA, and 12 h prior to the first PBMC collection. PBMC transcriptome data were obtained from 16 subjects, half of whom received DEX. The principal component analysis demonstrated a clear separation of the groups by altitude and treatment. HA exposure resulted in a large number of gene expression changes, particularly in pathways of inflammation or the regulation of cell division, translation, or transcription. DEX prophylaxis resulted in changes in fewer genes, particularly in immune pathways. The gene sets modulated by HA and DEX were distinct. Deconvolution analysis to assess PBMC subpopulations suggested changes in B-cell, T-cell, dendritic cell, and myeloid cell numbers with HA and DEX exposures. Acute HA travel and DEX prophylaxis induce significant changes in the PBMC transcriptome. The observed benefit of DEX prophylaxis against HA disease may be mediated by suppression of inflammatory pathways and changing leukocyte population distributions.


Asunto(s)
Dexametasona , Leucocitos Mononucleares , Humanos , Altitud , Dexametasona/farmacología , Inflamación , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA