Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Vet Pathol ; 61(4): 541-549, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366808

RESUMEN

Bats have many unique qualities amongst mammals; one of particular importance is their reported tolerance to viruses without developing disease. Here, the authors present evidence to the contrary by describing and demonstrating viral nucleic acids within lesions from eptesipox virus (EfPV) infection in big brown bats. One hundred and thirty bats submitted for necropsy from Saskatchewan, Canada, between 2017 and 2021 were screened for EfPV by polymerase chain reaction (PCR); 2 had amplifiable poxvirus DNA. The lesions associated with infection were oral and pharyngeal ulcerations and joint swelling in 2/2 and 1/2 cases, respectively. These changes were nonspecific for poxvirus infection, although intracytoplasmic viral inclusion bodies within the epithelium, as observed in 2/2 bats, are diagnostic when present. Viral nucleic acids, detected by in situ hybridization (ISH), were observed in the epithelium adjacent to ulcerative lesions from both cases and within the joint proliferation of 1 case. A new isolate of EfPV was obtained from 1 case and its identity was confirmed with electron microscopy and whole genome sequencing. Juxtanuclear replication factories were observed in most cells; however, rare intranuclear virus particles were also observed. The significance of the presence of virus particles within the nucleus is uncertain. Whole genome assembly indicated that the nucleotide sequence of the genome of this EfPV isolate was 99.7% identical to a previous isolate from big brown bats in Washington, USA between 2009 and 2011. This work demonstrates that bats are not resistant to the development of disease with viral infections and raises questions about the dogma of poxvirus intracytoplasmic replication.


Asunto(s)
Quirópteros , Infecciones por Poxviridae , Poxviridae , Animales , Infecciones por Poxviridae/veterinaria , Infecciones por Poxviridae/virología , Infecciones por Poxviridae/patología , Quirópteros/virología , Poxviridae/aislamiento & purificación , Poxviridae/genética , ADN Viral/genética , Reacción en Cadena de la Polimerasa/veterinaria , Saskatchewan , Femenino , Masculino , Hibridación in Situ/veterinaria , Secuenciación Completa del Genoma , Filogenia
2.
Vet Pathol ; 61(4): 550-561, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38619093

RESUMEN

Gammaherpesviruses (γHVs) are recognized as important pathogens in humans but their relationship with other animal hosts, especially wildlife species, is less well characterized. Our objectives were to examine natural Eptesicus fuscus gammaherpesvirus (EfHV) infections in their host, the big brown bat (Eptesicus fuscus), and determine whether infection is associated with disease. In tissue samples from 132 individual big brown bats, EfHV DNA was detected by polymerase chain reaction in 41 bats. Tissues from 59 of these cases, including 17 from bats with detectable EfHV genomes, were analyzed. An EfHV isolate was obtained from one of the cases, and electron micrographs and whole genome sequencing were used to confirm that this was a unique isolate of EfHV. Although several bats exhibited various lesions, we did not establish EfHV infection as a cause. Latent infection, defined as RNAScope probe binding to viral latency-associated nuclear antigen in the absence of viral envelope glycoprotein probe binding, was found within cells of the lymphoid tissues. These cells also had colocalization of the B-cell probe targeting CD20 mRNA. Probe binding for both latency-associated nuclear antigen and a viral glycoprotein was observed in individual cells dispersed throughout the alveolar capillaries of the lung, which had characteristics of pulmonary intravascular macrophages. Cells with a similar distribution in bat lungs expressed major histocompatibility class II, a marker for antigen presenting cells, and the existence of pulmonary intravascular macrophages in bats was confirmed with transmission electron microscopy. The importance of this cell type in γHVs infections warrants further investigation.


Asunto(s)
Quirópteros , Gammaherpesvirinae , Infecciones por Herpesviridae , Animales , Quirópteros/virología , Gammaherpesvirinae/aislamiento & purificación , Gammaherpesvirinae/genética , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Infecciones por Herpesviridae/patología , Pulmón/virología , Pulmón/patología , Macrófagos Alveolares/virología , ADN Viral/genética , Femenino , Tropismo Viral , Masculino , Genoma Viral
3.
Mol Cell Proteomics ; 20: 100136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34391887

RESUMEN

Immune checkpoint inhibitors and adoptive lymphocyte transfer-based therapies have shown great therapeutic potential in cancers with high tumor mutational burden (TMB), such as melanoma, but not in cancers with low TMB, such as mutant epidermal growth factor receptor (EGFR)-driven lung adenocarcinoma. Precision immunotherapy is an unmet need for most cancers, particularly for cancers that respond inadequately to immune checkpoint inhibitors. Here, we employed large-scale MS-based proteogenomic profiling to identify potential immunogenic human leukocyte antigen (HLA) class I-presented peptides in melanoma and EGFR-mutant lung adenocarcinoma. Similar numbers of peptides were identified from both tumor types. Cell line and patient-specific databases (DBs) were constructed using variants identified from whole-exome sequencing. A de novo search algorithm was used to interrogate the HLA class I immunopeptidome MS data. We identified 12 variant peptides and several classes of tumor-associated antigen-derived peptides. We constructed a cancer germ line (CG) antigen DB with 285 antigens. This allowed us to identify 40 class I-presented CG antigen-derived peptides. The class I immunopeptidome comprised more than 1000 post-translationally modified (PTM) peptides representing 58 different PTMs, underscoring the critical role PTMs may play in HLA binding. Finally, leveraging de novo search algorithm and an annotated long noncoding RNA (lncRNA) DB, we developed a novel lncRNA-encoded peptide discovery pipeline to identify 44 lncRNA-derived peptides that are presented by class I. We validated tandem MS spectra of select variant, CG antigen, and lncRNA-derived peptides using synthetic peptides and performed HLA class I-binding assays to demonstrate binding to class I proteins. In summary, we provide direct evidence of HLA class I presentation of a large number of variant and tumor-associated peptides in both low and high TMB cancer. These results can potentially be useful for precision immunotherapies, such as vaccine or adoptive cell therapies in melanoma and EGFR-mutant lung cancers.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Antígenos de Neoplasias/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Péptidos/metabolismo , Adenocarcinoma del Pulmón/genética , Anciano , Antígenos de Neoplasias/genética , Línea Celular Tumoral , Receptores ErbB/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Melanoma/genética , Mutación , Péptidos/genética , Proteogenómica
4.
BMC Plant Biol ; 19(1): 196, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31088371

RESUMEN

BACKGROUND: Root parasitic weeds are a major constraint to crop production worldwide causing significant yearly losses in yield and economic value. These parasites cause their destruction by attaching to their hosts with a unique organ, the haustorium, that allows them to obtain the nutrients (sugars, amino acids, etc.) needed to complete their lifecycle. Parasitic weeds differ in their nutritional requirements and degree of host dependency and the differential expression of sugar transporters is likely to be a critical component in the parasite's post-attachment survival. RESULTS: We identified gene families encoding monosaccharide transporters (MSTs), sucrose transporters (SUTs), and SWEETs (Sugars Will Eventually be Exported Transporters) in three root-parasitic weeds differing in host dependency: Triphysaria versicolor (facultative hemiparasite), Phelipanche aegyptiaca (holoparasite), and Striga hermonthica (obligate hemiparasite). The phylogenetic relationship and differential expression profiles of these genes throughout parasite development were examined to uncover differences existing among parasites with different levels of host dependence. Differences in estimated gene numbers are found among the three parasites, and orthologs within the different sugar transporter gene families are found to be either conserved among the parasites in their expression profiles throughout development, or to display parasite-specific differences in developmentally-timed expression. For example, MST genes in the pGLT clade express most highly before host connection in Striga and Triphysaria but not Phelipanche, whereas genes in the MST ERD6-like clade are highly expressed in the post-connection growth stages of Phelipanche but highest in the germination and reproduction stages in Striga. Whether such differences reflect changes resulting from differential host dependence levels is not known. CONCLUSIONS: While it is tempting to speculate that differences in estimated gene numbers and expression profiles among members of MST, SUT and SWEET gene families in Phelipanche, Striga and Triphysaria reflect the parasites' levels of host dependence, additional evidence that altered transporter gene expression is causative versus consequential is needed. Our findings identify potential targets for directed manipulation that will allow for a better understanding of the nutrient transport process and perhaps a means for controlling the devastating effects of these parasites on crop productivity.


Asunto(s)
Proteínas de Transporte de Monosacáridos/genética , Orobanchaceae/genética , Proteínas de Plantas/genética , Raíces de Plantas/parasitología , Striga/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Proteínas de Transporte de Monosacáridos/metabolismo , Orobanchaceae/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Striga/metabolismo
5.
BMC Genomics ; 18(1): 898, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29166879

RESUMEN

BACKGROUND: Cowpea (Vigna unguiculata (L.) Walp.) is the most important food and forage legume in the semi-arid tropics of sub-Saharan Africa where approximately 80% of worldwide production takes place primarily on low-input, subsistence farm sites. Among the major goals of cowpea breeding and improvement programs are the rapid manipulation of agronomic traits for seed size and quality and improved resistance to abiotic and biotic stresses to enhance productivity. Knowing the suite of transcription factors (TFs) and transcriptionally active proteins (TAPs) that control various critical plant cellular processes would contribute tremendously to these improvement aims. RESULTS: We used a computational approach that employed three different predictive pipelines to data mine the cowpea genome and identified over 4400 genes representing 136 different TF and TAP families. We compare the information content of cowpea to two evolutionarily close species common bean (Phaseolus vulgaris), and soybean (Glycine max) to gauge the relative informational content. Our data indicate that correcting for genome size cowpea has fewer TF and TAP genes than common bean (4408 / 5291) and soybean (4408/ 11,065). Members of the GROWTH-REGULATING FACTOR (GRF) and Auxin/indole-3-acetic acid (Aux/IAA) gene families appear to be over-represented in the genome relative to common bean and soybean, whereas members of the MADS (Minichromosome maintenance deficient 1 (MCM1), AGAMOUS, DEFICIENS, and serum response factor (SRF)) and C2C2-YABBY appear to be under-represented. Analysis of the AP2-EREBP APETALA2-Ethylene Responsive Element Binding Protein (AP2-EREBP), NAC (NAM (no apical meristem), ATAF1, 2 (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon)), and WRKY families, known to be important in defense signaling, revealed changes and phylogenetic rearrangements relative to common bean and soybean that suggest these groups may have evolved different functions. CONCLUSIONS: The availability of detailed information on the coding capacity of the cowpea genome and in particular the various TF and TAP gene families will facilitate future comparative analysis and development of strategies for controlling growth, differentiation, and abiotic and biotic stress resistances of cowpea.


Asunto(s)
Familia de Multigenes , Proteínas de Plantas/genética , Factores de Transcripción/genética , Vigna/genética , Genómica , Phaseolus/genética , Filogenia , Glycine max/genética , Factores de Transcripción/clasificación
6.
J Gen Virol ; 98(9): 2297-2309, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28840816

RESUMEN

Bats are important reservoir hosts for emerging viruses, including coronaviruses that cause diseases in people. Although there have been several studies on the pathogenesis of coronaviruses in humans and surrogate animals, there is little information on the interactions of these viruses with their natural bat hosts. We detected a coronavirus in the intestines of 53/174 hibernating little brown bats (Myotis lucifugus), as well as in the lungs of some of these individuals. Interestingly, the presence of the virus was not accompanied by overt inflammation. Viral RNA amplified from little brown bats in this study appeared to be from two distinct clades. The sequences in clade 1 were very similar to the archived sequence derived from little brown bats and the sequences from clade 2 were more closely related to the archived sequence from big brown bats. This suggests that two closely related coronaviruses may circulate in little brown bats. Sequence variation among coronavirus detected from individual bats suggested that infection occurred prior to hibernation, and that the virus persisted for up to 4 months of hibernation in the laboratory. Based on the sequence of its genome, the coronavirus was placed in the Alphacoronavirus genus, along with some human coronaviruses, bat viruses and the porcine epidemic diarrhoea virus. The detection and identification of an apparently persistent coronavirus in a local bat species creates opportunities to understand the dynamics of coronavirus circulation in bat populations.


Asunto(s)
Quirópteros/virología , Infecciones por Coronavirus/veterinaria , Coronavirus/aislamiento & purificación , Animales , Coronavirus/genética , Coronavirus/fisiología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Pulmón/patología , Pulmón/virología , Filogenia , Estados Unidos
7.
Proc Natl Acad Sci U S A ; 111(45): 16142-7, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349404

RESUMEN

Luman/cAMP response element binding protein 3 is an endoplasmic reticulum (ER) transmembrane basic leucine zipper transcription factor whose mRNA and protein localize to adult sensory axons, the latter with axonal ER components along the axon length. Here we show that axon-derived Luman plays an important role in relaying information about axonal injury to the neuronal cell body. Axotomy induces axonal Luman synthesis and also release from the axonal ER of Luman's transcriptionally active amino terminus, which is transported to the cell body in an importin-mediated manner. Visualization of the activation and retrograde translocation of Luman into the nucleus in real time both in vivo and in vitro was accomplished using a specially created N- and C-terminal-tagged Luman adenoviral vector. Small interfering RNA used to reduce Luman expression either neuronally or just axonally significantly impaired the ability of 24-h injury-conditioned sensory neurons to extend the regeneration-associated elongating form of axon growth but had no impact on axon outgrowth in naïve neurons. Collectively, these findings link injury-associated axonal ER responses proximal to the site of injury to the intrinsic regenerative growth capacity of adult sensory neurons.


Asunto(s)
Axones/metabolismo , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Animales , Axones/patología , Núcleo Celular/genética , Chlorocebus aethiops , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Regulación de la Expresión Génica , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/patología , Estructura Terciaria de Proteína , Ratas , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Células Vero
8.
J Infect Dis ; 214(suppl 3): S297-S302, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27354372

RESUMEN

Filoviruses are strongly associated with several species of bats as their natural reservoirs. In this study, we determined the replication potential of all filovirus species: Marburg marburgvirus, Taï Forest ebolavirus, Reston ebolavirus, Sudan ebolavirus, Zaire ebolavirus, and Bundibugyo ebolavirus. Filovirus replication was supported by all cell lines derived from 6 Old and New World bat species: the hammer-headed fruit bat, Buettikofer's epauletted fruit bat, the Egyptian fruit bat, the Jamaican fruit bat, the Mexican free-tailed bat and the big brown bat. In addition, we showed that Marburg virus Angola and Ebola virus Makona-WPGC07 efficiently replicated at 37°C, 37°-41°C, or 41°C, contrary to the hypothesis that temporal elevation in temperature due to flight affects filovirus replication in bats.


Asunto(s)
Quirópteros/virología , Reservorios de Enfermedades/virología , Infecciones por Filoviridae/virología , Filoviridae/aislamiento & purificación , Fiebre Hemorrágica Ebola/virología , Enfermedad del Virus de Marburg/virología , Animales , Línea Celular , Ebolavirus/inmunología , Ebolavirus/aislamiento & purificación , Ebolavirus/fisiología , Filoviridae/fisiología , Humanos , Marburgvirus/inmunología , Marburgvirus/aislamiento & purificación , Marburgvirus/fisiología , Temperatura , Replicación Viral
9.
J Neurosci ; 35(43): 14557-70, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26511246

RESUMEN

We recently revealed that the axon endoplasmic reticulum resident transcription factor Luman/CREB3 (herein called Luman) serves as a unique retrograde injury signal in regulation of the intrinsic elongating form of sensory axon regeneration. Here, evidence supports that Luman contributes to axonal regeneration through regulation of the unfolded protein response (UPR) and cholesterol biosynthesis in adult rat sensory neurons. One day sciatic nerve crush injury triggered a robust increase in UPR-associated mRNA and protein expression in both neuronal cell bodies and the injured axons. Knockdown of Luman expression in 1 d injury-conditioned neurons by siRNA attenuated axonal outgrowth to 48% of control injured neurons and was concomitant with reduced UPR- and cholesterol biosynthesis-associated gene expression. UPR PCR-array analysis coupled with qRT-PCR identified and confirmed that four transcripts involved in cholesterol regulation were downregulated >2-fold by the Luman siRNA treatment of the injury-conditioned neurons. Further, the Luman siRNA-attenuated outgrowth could be significantly rescued by either cholesterol supplementation or 2 ng/ml of the UPR inducer tunicamycin, an amount determined to elevate the depressed UPR gene expression to a level equivalent of that observed with crush injury. Using these approaches, outgrowth increased significantly to 74% or 69% that of injury-conditioned controls, respectively. The identification of Luman as a regulator of the injury-induced UPR and cholesterol at levels that benefit the intrinsic ability of axotomized adult rat sensory neurons to undergo axonal regeneration reveals new therapeutic targets to bolster nerve repair.


Asunto(s)
Axones/fisiología , Colesterol/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Regeneración Nerviosa/genética , Desplegamiento Proteico , Células Receptoras Sensoriales/fisiología , Animales , Recuento de Células , Ganglios Espinales/citología , Técnicas de Silenciamiento del Gen , Masculino , Compresión Nerviosa , Neuritas/efectos de los fármacos , Neuritas/fisiología , Desplegamiento Proteico/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar , Neuropatía Ciática/genética , Neuropatía Ciática/patología , Tunicamicina/farmacología
10.
Reprod Fertil Dev ; 28(6): 795-805, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25426842

RESUMEN

The aim of the present study was to determine a set of reference genes in granulosa cells of dominant follicles that are suitable for relative gene expression analyses during maternal and follicular aging. Granulosa cells of growing and preovulatory dominant follicles were collected from aged and young cows (maternal aging study) and from FSH-stimulated follicles developing under different durations of FSH treatment (follicular aging study). The mRNA levels of the two commonly used reference genes (GAPDH, ACTB) and four novel genes (UBE2D2, EIF2B2, SF3A1, RNF20) were analysed using cycle threshold values. Results revealed that mRNA levels of GAPDH, ACTB, EIF2B2, RNF20, SF3A1 and UBE2D2 were similar (P>0.05) between dominant follicle type, age and among follicles obtained after FSH-stimulation, but differed (P=0.005) due to mRNA processing (i.e. with versus without amplification). The stability of reference genes was analysed using GeNorm, DeltaCT and NormFinder programs and comprehensive ranking order was determined using RefFinder. The mRNA levels of GAPDH and ACTB were less stable than those of UBE2D2 and EIF2B2. The geometric mean of multiple genes (UBE2D2, EIF2B2, GAPDH and SF3A1) is a more appropriate reference control than the use of a single reference gene to compare relative gene expression among dominant and FSH-stimulated follicles during maternal and/or follicular aging studies.


Asunto(s)
Envejecimiento , Hormona Folículo Estimulante/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células de la Granulosa/metabolismo , Oogénesis , Folículo Ovárico/metabolismo , ARN Mensajero/metabolismo , Algoritmos , Animales , Animales Endogámicos , Bovinos , Factor 2B Eucariótico de Iniciación/genética , Factor 2B Eucariótico de Iniciación/metabolismo , Femenino , Fármacos para la Fertilidad Femenina/farmacología , Hormona Folículo Estimulante/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células de la Granulosa/citología , Células de la Granulosa/efectos de los fármacos , Oogénesis/efectos de los fármacos , Folículo Ovárico/citología , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/crecimiento & desarrollo , Ovulación/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Estabilidad del ARN/efectos de los fármacos , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Saskatchewan , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
BMC Vet Res ; 11: 22, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25890299

RESUMEN

BACKGROUND: We had previously shown that the bLZip domain-containing transcription factor, Zhangfei/CREBZF inhibits the growth and the unfolded protein response (UPR) in cells of the D-17 canine osteosarcoma (OS) line and that the effects of Zhangfei are mediated by it stabilizing the tumour suppressor protein p53. To determine if our observations with D-17 cells applied more universally to canine OS, we examined three other independently isolated canine OS cell lines--Abrams, McKinley and Gracie. RESULTS: Like D-17, the three cell lines expressed p53 proteins that were capable of activating promoters with p53 response elements on their own, and synergistically with Zhangfei. Furthermore, as with D-17 cells, Zhangfei suppressed the growth and UPR-related transcripts in the OS cell lines. Zhangfei also induced the activation of osteocalcin expression, a marker of osteoblast differentiation and triggered programmed cell death. CONCLUSIONS: Osteosarcomas are common malignancies in large breeds of dogs. Although there has been dramatic progress in their treatment, these therapies often fail, leading to recurrence of the tumour and metastatic spread. Our results indicate that induction of the expression of Zhangfei in OS, where p53 is functional, may be an effective modality for the treatment of OS.


Asunto(s)
Apoptosis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Neoplasias Óseas/fisiopatología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Enfermedades de los Perros/fisiopatología , Osteosarcoma/fisiopatología , Respuesta de Proteína Desplegada/fisiología , Animales , Línea Celular Tumoral , Perros , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína p53 Supresora de Tumor/fisiología
12.
Proc Natl Acad Sci U S A ; 109(18): 6999-7003, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22493237

RESUMEN

White-nose syndrome (WNS) is an emerging disease of hibernating bats associated with cutaneous infection by the fungus Geomyces destructans (Gd), and responsible for devastating declines of bat populations in eastern North America. Affected bats appear emaciated and one hypothesis is that they spend too much time out of torpor during hibernation, depleting vital fat reserves required to survive the winter. The fungus has also been found at low levels on bats throughout Europe but without mass mortality. This finding suggests that Gd is either native to both continents but has been rendered more pathogenic in North America by mutation or environmental change, or that it recently arrived in North America as an invader from Europe. Thus, a causal link between Gd and mortality has not been established and the reason for its high pathogenicity in North America is unknown. Here we show that experimental inoculation with either North American or European isolates of Gd causes WNS and mortality in the North American bat, Myotis lucifugus. In contrast to control bats, individuals inoculated with either isolate of Gd developed cutaneous infections diagnostic of WNS, exhibited a progressive increase in the frequency of arousals from torpor during hibernation, and were emaciated after 3-4 mo. Our results demonstrate that altered torpor-arousal cycles underlie mortality from WNS and provide direct evidence that Gd is a novel pathogen to North America from Europe.


Asunto(s)
Ascomicetos/patogenicidad , Quirópteros/microbiología , Dermatomicosis/veterinaria , Nariz/microbiología , Animales , Ascomicetos/aislamiento & purificación , Quirópteros/fisiología , Dermatomicosis/etiología , Dermatomicosis/microbiología , Dermatomicosis/fisiopatología , Europa (Continente) , Hibernación , Masculino , América del Norte , Piel/microbiología , Piel/patología , Síndrome , Virulencia
13.
Biol Lett ; 9(4): 20130177, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23720520

RESUMEN

White-nose syndrome is devastating North American bat populations but we lack basic information on disease mechanisms. Altered blood physiology owing to epidermal invasion by the fungal pathogen Geomyces destructans (Gd) has been hypothesized as a cause of disrupted torpor patterns of affected hibernating bats, leading to mortality. Here, we present data on blood electrolyte concentration, haematology and acid-base balance of hibernating little brown bats, Myotis lucifugus, following experimental inoculation with Gd. Compared with controls, infected bats showed electrolyte depletion (i.e. lower plasma sodium), changes in haematology (i.e. increased haematocrit and decreased glucose) and disrupted acid-base balance (i.e. lower CO2 partial pressure and bicarbonate). These findings indicate hypotonic dehydration, hypovolaemia and metabolic acidosis. We propose a mechanistic model linking tissue damage to altered homeostasis and morbidity/mortality.


Asunto(s)
Equilibrio Ácido-Base , Ascomicetos/patogenicidad , Quirópteros , Micosis/fisiopatología , Desequilibrio Hidroelectrolítico/fisiopatología , Alas de Animales/patología , Animales , Ascomicetos/fisiología , Glucemia/análisis , Quirópteros/sangre , Deshidratación/microbiología , Deshidratación/fisiopatología , Hematócrito , Hipovolemia/microbiología , Hipovolemia/fisiopatología , Manitoba , Micosis/microbiología , Inanición/microbiología , Inanición/fisiopatología , Desequilibrio Hidroelectrolítico/microbiología , Alas de Animales/microbiología
14.
Cell Rep Med ; 4(2): 100938, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36773602

RESUMEN

Malignant mesothelioma is an aggressive cancer with limited treatment options and poor prognosis. A better understanding of mesothelioma genomics and transcriptomics could advance therapies. Here, we present a mesothelioma cohort of 122 patients along with their germline and tumor whole-exome and tumor RNA sequencing data as well as phenotypic and drug response information. We identify a 48-gene prognostic signature that is highly predictive of mesothelioma patient survival, including CCNB1, the expression of which is highly predictive of patient survival on its own. In addition, we analyze the transcriptomics data to study the tumor immune microenvironment and identify synthetic-lethality-based signatures predictive of response to therapy. This germline and somatic whole-exome sequencing as well as transcriptomics data from the same patient are a valuable resource to address important biological questions, including prognostic biomarkers and determinants of treatment response in mesothelioma.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Pronóstico , Transcriptoma , Neoplasias Pulmonares/tratamiento farmacológico , Mesotelioma/tratamiento farmacológico , Mesotelioma/metabolismo , Mesotelioma/patología , Genómica , Microambiente Tumoral
15.
J Assoc Med Microbiol Infect Dis Can ; 8(3): 187-191, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38058495

RESUMEN

Canada experienced a wave of HPAI H5N1 outbreaks in the spring of 2022 with millions of wild and farmed birds being infected. Seabird mortalities in Canada have been particularly severe on the Atlantic Coast over the summer of 2022. Over 7 million birds have been culled in Canada, and outbreaks continue to profoundly affect commercial bird farms across the world. This new H5N1 virus can and has infected multiple mammalian species, including skunks, foxes, bears, mink, seals, porpoises, sea lions, and dolphins. Viruses with mammalian adaptations such as the mutations PB2-E627K, E627V, and D701N were found in the brain of various carnivores in Europe and Canada. To date this specific clade of H5N1 virus has been identified in less than 10 humans. At the ground level, awareness should be raised among frontline practitioners most likely to encounter patients with HPAI.


Le Canada a vécu un vague d'éclosions de grippe aviaire de souche H5N1 hautement pathogène au printemps 2022 lorsque des millions d'oiseaux sauvages et d'oiseaux d'élevage ont été infectés. La mortalité des oiseaux marins au Canada a été particulièrement marquée sur la côte Atlantique pendant l'été 2022. Plus de sept millions d'oiseaux ont été abattus au Canada, et les éclosions continuent de nuire profondément aux élevages commerciaux d'oiseaux dans le monde. Ce nouveau virus H5N1 peut infecter de multiples espèces de mammifères, y compris des mouffettes, des renards, des ours, des visons, des phoques, des marsouins, des otaries et des dauphins. Les virus adaptés aux mammifères et porteurs des mutations PB2-E627K, E627V et D701N, ont été observés dans le cerveau de divers carnivores de l'Europe et du Canada. Jusqu'à présent, ce clade du virus H5N1 a été dépisté chez moins de dix humains. Sur le terrain, il est important de sensibiliser les praticiens de première ligne qui sont plus susceptibles de voir des patients atteints de la grippe aviaire de souche hautement pathogène.

16.
J Neurooncol ; 109(3): 485-501, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22798206

RESUMEN

Cells from medulloblastoma lines do not contain detectable amounts of the basic leucine-zipper protein Zhangfei. However, we have previously shown that expression of this protein in cells of the ONS-76 and UW228 medulloblastoma lines causes the cells to stop growing and develop processes that resemble neurites. Our objective was to determine the molecular mechanisms by which Zhangfei influences ONS-76 cells. We infected ONS-76 cells with adenovirus vectors expressing either Zhangfei or the control protein LacZ and then compared the following parameters in Zhangfei and LacZ-expressing cells: (a) markers of apoptosis, autophagy and macropinocytosis, (b) transcripts for genes involved in neurogenesis and apoptosis, (c) phosphorylation of peptide targets of selected cellular protein kinases, and (d) activation of transcription factors. Zhangfei-expressing cells appeared to succumb to apoptosis. Increased staining for autophagic vesicles and upregulated expression of autophagy response genes in these cells indicated that they were undergoing autophagy, possibly associated with apoptosis. Within our analysis, patterns of gene expression and phosphorylation-mediated signal transduction activity in Zhangfei-expressing cells indicated that the mitogen-activated protein kinase (MAPK) pathway was active. In addition, we found that the transcription factor Brn3a as well as factors implicated in differentiation were also active in Zhangfei-expressing cells. We tested the hypothesis that Zhangfei enhances the expression of Brn3a, a known inducer of TrkA, the high-affinity receptor for nerve growth factor (NGF). TrkA then engages NGF in an autocrine manner triggering the MAPK pathway and leading to differentiation of ONS-76 cells into neuron and glia-like cells-a process that eventually brings about cell death. We showed that: (a) Zhangfei could enhance transcription from the isolated Brn3a promoter, (b) ONS-76 cells produced NGF and (c) antibodies against NGF and inhibitors of TrkA and selected components of the MAPK pathway could partially restore the growth of Zhangfei-expressing ONS-76 cells.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Neoplasias Cerebelosas/metabolismo , Meduloblastoma/metabolismo , Transducción de Señal/fisiología , Línea Celular Tumoral , Neoplasias Cerebelosas/patología , Citometría de Flujo , Humanos , Meduloblastoma/patología , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/biosíntesis , Transcriptoma , Transfección
17.
Cell Rep ; 39(8): 110856, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35613581

RESUMEN

Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation.


Asunto(s)
Infecciones por Virus ADN , Interferón Tipo I , Leucemia Mieloide Aguda , Adenosina Trifosfato , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/metabolismo , Humanos , Interferón Tipo I/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal
18.
Cancers (Basel) ; 13(13)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34283064

RESUMEN

Background: We assessed whether serial ctDNA monitoring of plasma and saliva predicts response and resistance to osimertinib in EGFR-mutant lung adenocarcinoma. Three ctDNA technologies-blood-based droplet-digital PCR (ddPCR), next-generation sequencing (NGS), and saliva-based EFIRM liquid biopsy (eLB)-were employed to investigate their complementary roles. Methods: Plasma and saliva samples were collected from patients enrolled in a prospective clinical trial of osimertinib and local ablative therapy upon progression (NCT02759835). Plasma was analyzed by ddPCR and NGS. Saliva was analyzed by eLB. Results: A total of 25 patients were included. We analyzed 534 samples by ddPCR (n = 25), 256 samples by NGS (n = 24) and 371 samples by eLB (n = 22). Among 20 patients who progressed, ctDNA progression predated RECIST 1.1 progression by a median of 118 days (range: 61-272 days) in 11 (55%) patients. Of nine patients without ctDNA progression by ddPCR, two patients had an increase in mutant EGFR by eLB and two patients were found to have ctDNA progression by NGS. Levels of ctDNA measured by ddPCR and NGS at early time points, but not volumetric tumor burden, were associated with PFS. EGFR/ERBB2/MET/KRAS amplifications, EGFR C797S, PIK3CA E545K, PTEN V9del, and CTNNB1 S45P were key resistance mechanisms identified by NGS. Conclusion: Serial assessment of ctDNA in plasma and saliva predicts response and resistance to osimertinib, with each assay having supplementary roles.

19.
Comput Struct Biotechnol J ; 18: 3705-3711, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250972

RESUMEN

The current coronavirus disease (COVID-19) outbreak caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV2) has emerged as a threat to global social and economic systems. Disparity in the infection of SARS-CoV2 among host population and species is an established fact without any clear explanation. To initiate infection, viral S-protein binds to the Angiotensin-Converting Enzyme 2 (ACE2) receptor of the host cell. Our analysis of retrieved amino acid sequences deposited in data bases shows that S-proteins and ACE2 are rich in cysteine (Cys) residues, many of which are conserved in various SARS-related coronaviruses and participate in intra-molecular disulfide bonds. High-resolution protein structures of S-proteins and ACE2 receptors highlighted the probability that two of these disulfide bonds are potentially redox-active, facilitating the primal interaction between the receptor and the spike protein. Presence of redox-active disulfides in the interacting parts of S-protein, ACE2, and a ferredoxin-like fold domain in ACE2, strongly indicate the role of redox in COVID-19 pathogenesis and severity. Resistant animals lack a redox-active disulfide (Cys133-Cys141) in ACE2 sequences, further strengthening the redox hypothesis for infectivity. ACE2 is a known regulator of oxidative stress. Augmentation of cellular oxidation with aging and illness is the most likely explanation of increased vulnerability of the elderly and persons with underlying health conditions to COVID-19.

20.
Sci Rep ; 10(1): 7257, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350357

RESUMEN

Coronaviruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) are speculated to have originated in bats. The mechanisms by which these viruses are maintained in individuals or populations of reservoir bats remain an enigma. Mathematical models have predicted long-term persistent infection with low levels of periodic shedding as a likely route for virus maintenance and spillover from bats. In this study, we tested the hypothesis that bat cells and MERS coronavirus (CoV) can co-exist in vitro. To test our hypothesis, we established a long-term coronavirus infection model of bat cells that are persistently infected with MERS-CoV. We infected cells from Eptesicus fuscus with MERS-CoV and maintained them in culture for at least 126 days. We characterized the persistently infected cells by detecting virus particles, protein and transcripts. Basal levels of type I interferon in the long-term infected bat cells were higher, relative to uninfected cells, and disrupting the interferon response in persistently infected bat cells increased virus replication. By sequencing the whole genome of MERS-CoV from persistently infected bat cells, we identified that bat cells repeatedly selected for viral variants that contained mutations in the viral open reading frame 5 (ORF5) protein. Furthermore, bat cells that were persistently infected with ΔORF5 MERS-CoV were resistant to superinfection by wildtype virus, likely due to reduced levels of the virus receptor, dipeptidyl peptidase 4 (DPP4) and higher basal levels of interferon in these cells. In summary, our study provides evidence for a model of coronavirus persistence in bats, along with the establishment of a unique persistently infected cell culture model to study MERS-CoV-bat interactions.


Asunto(s)
Quirópteros/virología , Infecciones por Coronavirus/virología , Eulipotyphla/virología , Fibroblastos/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Sistemas de Lectura Abierta/genética , Mutación Puntual , Animales , Quirópteros/anatomía & histología , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus , Dipeptidil Peptidasa 4/metabolismo , Eulipotyphla/anatomía & histología , Fibroblastos/metabolismo , Genoma Viral/genética , Humanos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Riñón/citología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de la Nucleocápside/genética , Receptores Virales/metabolismo , Transfección , Células Vero , Replicación Viral/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA