Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell ; 173(3): 611-623.e17, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656891

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Progresión de la Enfermedad , Neoplasias Renales/genética , Neoplasias Renales/patología , Mutación , Regiones no Traducidas 5' , Adulto , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 3 , Cromosomas Humanos Par 5 , Femenino , Dosificación de Gen , Genoma Humano , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Telomerasa/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
2.
Cell ; 173(3): 595-610.e11, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656894

RESUMEN

The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Biomarcadores de Tumor , Cromosomas , Evolución Clonal , Progresión de la Enfermedad , Evolución Molecular , Femenino , Heterogeneidad Genética , Variación Genética , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Mutación , Metástasis de la Neoplasia , Fenotipo , Filogenia , Pronóstico , Estudios Prospectivos , Análisis de Secuencia de ADN
3.
Nature ; 597(7876): 387-392, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433963

RESUMEN

Starting from the zygote, all cells in the human body continuously acquire mutations. Mutations shared between different cells imply a common progenitor and are thus naturally occurring markers for lineage tracing1,2. Here we reconstruct extensive phylogenies of normal tissues from three adult individuals using whole-genome sequencing of 511 laser capture microdissections. Reconstructed embryonic progenitors in the same generation of a phylogeny often contribute to different extents to the adult body. The degree of this asymmetry varies between individuals, with ratios between the two reconstructed daughter cells of the zygote ranging from 60:40 to 93:7. Asymmetries pervade subsequent generations and can differ between tissues in the same individual. The phylogenies resolve the spatial embryonic patterning of tissues, revealing contiguous patches of, on average, 301 crypts in the adult colonic epithelium derived from a most recent embryonic cell and also a spatial effect in brain development. Using data from ten additional men, we investigated the developmental split between soma and germline, with results suggesting an extraembryonic contribution to primordial germ cells. This research demonstrates that, despite reaching the same ultimate tissue patterns, early bottlenecks and lineage commitments lead to substantial variation in embryonic patterns both within and between individuals.


Asunto(s)
Linaje de la Célula/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Mutación , Encéfalo/metabolismo , Cromosomas Humanos Y/genética , Células Clonales/metabolismo , Mutación de Línea Germinal/genética , Humanos , Masculino , Mosaicismo , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple/genética
4.
Nature ; 597(7876): 381-386, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433962

RESUMEN

Over the course of an individual's lifetime, normal human cells accumulate mutations1. Here we compare the mutational landscape in 29 cell types from the soma and germline using multiple samples from the same individuals. Two ubiquitous mutational signatures, SBS1 and SBS5/40, accounted for the majority of acquired mutations in most cell types, but their absolute and relative contributions varied substantially. SBS18, which potentially reflects oxidative damage2, and several additional signatures attributed to exogenous and endogenous exposures contributed mutations to subsets of cell types. The rate of mutation was lowest in spermatogonia, the stem cells from which sperm are generated and from which most genetic variation in the human population is thought to originate. This was due to low rates of ubiquitous mutational processes and may be partially attributable to a low rate of cell division in basal spermatogonia. These results highlight similarities and differences in the maintenance of the germline and soma.


Asunto(s)
Células Germinativas/metabolismo , Mutación de Línea Germinal , Tasa de Mutación , Especificidad de Órganos/genética , Anciano , Células Clonales/metabolismo , Femenino , Salud , Humanos , Masculino , Microdisección , Persona de Mediana Edad , Estrés Oxidativo , Espermatogonias/metabolismo
5.
Nature ; 580(7805): 640-646, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32350471

RESUMEN

All normal somatic cells are thought to acquire mutations, but understanding of the rates, patterns, causes and consequences of somatic mutations in normal cells is limited. The uterine endometrium adopts multiple physiological states over a lifetime and is lined by a gland-forming epithelium1,2. Here, using whole-genome sequencing, we show that normal human endometrial glands are clonal cell populations with total mutation burdens that increase at about 29 base substitutions per year and that are many-fold lower than those of endometrial cancers. Normal endometrial glands frequently carry 'driver' mutations in cancer genes, the burden of which increases with age and decreases with parity. Cell clones with drivers often originate during the first decades of life and subsequently progressively colonize the epithelial lining of the endometrium. Our results show that mutational landscapes differ markedly between normal tissues-perhaps shaped by differences in their structure and physiology-and indicate that the procession of neoplastic change that leads to endometrial cancer is initiated early in life.


Asunto(s)
Análisis Mutacional de ADN , Endometrio/citología , Endometrio/metabolismo , Epitelio/metabolismo , Salud , Mutación , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Carcinogénesis/genética , Células Clonales/citología , Neoplasias Endometriales/genética , Endometrio/patología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio/patología , Femenino , Humanos , Persona de Mediana Edad , Paridad/genética , Factores de Tiempo , Adulto Joven
6.
Nature ; 578(7793): 122-128, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025013

RESUMEN

Cancer develops through a process of somatic evolution1,2. Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes3. Here, by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)4, we reconstruct the life history and evolution of mutational processes and driver mutation sequences of 38 types of cancer. Early oncogenesis is characterized by mutations in a constrained set of driver genes, and specific copy number gains, such as trisomy 7 in glioblastoma and isochromosome 17q in medulloblastoma. The mutational spectrum changes significantly throughout tumour evolution in 40% of samples. A nearly fourfold diversification of driver genes and increased genomic instability are features of later stages. Copy number alterations often occur in mitotic crises, and lead to simultaneous gains of chromosomal segments. Timing analyses suggest that driver mutations often precede diagnosis by many years, if not decades. Together, these results determine the evolutionary trajectories of cancer, and highlight opportunities for early cancer detection.


Asunto(s)
Evolución Molecular , Genoma Humano/genética , Neoplasias/genética , Reparación del ADN/genética , Dosificación de Gen , Genes Supresores de Tumor , Variación Genética , Humanos , Mutagénesis Insercional/genética
7.
Nature ; 556(7702): 457-462, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29643510

RESUMEN

Every cancer originates from a single cell. During expansion of the neoplastic cell population, individual cells acquire genetic and phenotypic differences from each other. Here, to investigate the nature and extent of intra-tumour diversification, we characterized organoids derived from multiple single cells from three colorectal cancers as well as from adjacent normal intestinal crypts. Colorectal cancer cells showed extensive mutational diversification and carried several times more somatic mutations than normal colorectal cells. Most mutations were acquired during the final dominant clonal expansion of the cancer and resulted from mutational processes that are absent from normal colorectal cells. Intra-tumour diversification of DNA methylation and transcriptome states also occurred; these alterations were cell-autonomous, stable, and followed the phylogenetic tree of each cancer. There were marked differences in responses to anticancer drugs between even closely related cells of the same tumour. The results indicate that colorectal cancer cells experience substantial increases in somatic mutation rate compared to normal colorectal cells, and that genetic diversification of each cancer is accompanied by pervasive, stable and inherited differences in the biological states of individual cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Células Clonales/efectos de los fármacos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Evolución Molecular , Mutación , Análisis de la Célula Individual , Proliferación Celular , Células Clonales/metabolismo , Células Clonales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Metilación de ADN , Análisis Mutacional de ADN , Regulación Neoplásica de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Intestinos/citología , Intestinos/efectos de los fármacos , Intestinos/patología , Tasa de Mutación , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/patología , Transcriptoma
9.
N Engl J Med ; 383(19): 1860-1865, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33211929

RESUMEN

Childhood tumors that occur synchronously in different anatomical sites usually represent metastatic disease. However, such tumors can be independent neoplasms. We investigated whether cases of bilateral neuroblastoma represented independent tumors in two children with pathogenic germline mutations by genotyping somatic mutations shared between tumors and blood. Our results suggested that in both children, the lineages that had given rise to the tumors had segregated within the first cell divisions of the zygote, without being preceded by a common premalignant clone. In one patient, the tumors had parallel evolution, including distinct second hits in SMARCA4, a putative predisposition gene for neuroblastoma. These findings portray cases of bilateral neuroblastoma as having independent lesions mediated by a germline predisposition. (Funded by Children with Cancer UK and Wellcome.).


Asunto(s)
Neoplasias Abdominales/genética , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias Primarias Múltiples/genética , Neuroblastoma/genética , Neoplasias Abdominales/patología , Neoplasias de las Glándulas Suprarrenales/patología , Preescolar , ADN Helicasas/genética , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Masculino , Neuroblastoma/patología , Proteínas Nucleares/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Translocación Genética
10.
Br J Cancer ; 127(6): 1051-1060, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35739300

RESUMEN

BACKGROUND: Surgery for renal cell carcinoma (RCC) with venous tumour thrombus (VTT) extension into the renal vein (RV) and/or inferior vena cava (IVC) has high peri-surgical morbidity/mortality. NAXIVA assessed the response of VTT to axitinib, a potent tyrosine kinase inhibitor. METHODS: NAXIVA was a single-arm, multi-centre, Phase 2 study. In total, 20 patients with resectable clear cell RCC and VTT received upto 8 weeks of pre-surgical axitinib. The primary endpoint was percentage of evaluable patients with VTT improvement by Mayo level on MRI. Secondary endpoints were percentage change in surgical approach and VTT length, response rate (RECISTv1.1) and surgical morbidity. RESULTS: In all, 35% (7/20) patients with VTT had a reduction in Mayo level with axitinib: 37.5% (6/16) with IVC VTT and 25% (1/4) with RV-only VTT. No patients had an increase in Mayo level. In total, 75% (15/20) of patients had a reduction in VTT length. Overall, 41.2% (7/17) of patients who underwent surgery had less invasive surgery than originally planned. Non-responders exhibited lower baseline microvessel density (CD31), higher Ki67 and exhausted or regulatory T-cell phenotype. CONCLUSIONS: NAXIVA provides the first Level II evidence that axitinib downstages VTT in a significant proportion of patients leading to reduction in the extent of surgery. CLINICAL TRIAL REGISTRATION: NCT03494816.


Asunto(s)
Axitinib , Carcinoma de Células Renales , Neoplasias Renales , Trombosis , Axitinib/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/cirugía , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/cirugía , Terapia Neoadyuvante , Nefrectomía , Estudios Retrospectivos , Trombosis/prevención & control
11.
BMC Cancer ; 21(1): 1238, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34794412

RESUMEN

BACKGROUND: Window-of-opportunity trials, evaluating the engagement of drugs with their biological target in the time period between diagnosis and standard-of-care treatment, can help prioritise promising new systemic treatments for later-phase clinical trials. Renal cell carcinoma (RCC), the 7th commonest solid cancer in the UK, exhibits targets for multiple new systemic anti-cancer agents including DNA damage response inhibitors, agents targeting vascular pathways and immune checkpoint inhibitors. Here we present the trial protocol for the WIndow-of-opportunity clinical trial platform for evaluation of novel treatment strategies in REnal cell cancer (WIRE). METHODS: WIRE is a Phase II, multi-arm, multi-centre, non-randomised, proof-of-mechanism (single and combination investigational medicinal product [IMP]), platform trial using a Bayesian adaptive design. The Bayesian adaptive design leverages outcome information from initial participants during pre-specified interim analyses to determine and minimise the number of participants required to demonstrate efficacy or futility. Patients with biopsy-proven, surgically resectable, cT1b+, cN0-1, cM0-1 clear cell RCC and no contraindications to the IMPs are eligible to participate. Participants undergo diagnostic staging CT and renal mass biopsy followed by treatment in one of the treatment arms for at least 14 days. Initially, the trial includes five treatment arms with cediranib, cediranib + olaparib, olaparib, durvalumab and durvalumab + olaparib. Participants undergo a multiparametric MRI before and after treatment. Vascularised and de-vascularised tissue is collected at surgery. A ≥ 30% increase in CD8+ T-cells on immunohistochemistry between the screening and nephrectomy is the primary endpoint for durvalumab-containing arms. Meanwhile, a reduction in tumour vascular permeability measured by Ktrans on dynamic contrast-enhanced MRI by ≥30% is the primary endpoint for other arms. Secondary outcomes include adverse events and tumour size change. Exploratory outcomes include biomarkers of drug mechanism and treatment effects in blood, urine, tissue and imaging. DISCUSSION: WIRE is the first trial using a window-of-opportunity design to demonstrate pharmacological activity of novel single and combination treatments in RCC in the pre-surgical space. It will provide rationale for prioritising promising treatments for later phase trials and support the development of new biomarkers of treatment effect with its extensive translational agenda. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03741426 / EudraCT: 2018-003056-21 .


Asunto(s)
Antineoplásicos/uso terapéutico , Teorema de Bayes , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biopsia , Permeabilidad Capilar/efectos de los fármacos , Carcinoma de Células Renales/irrigación sanguínea , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/patología , Humanos , Riñón/patología , Neoplasias Renales/irrigación sanguínea , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Linfocitos Infiltrantes de Tumor , Imagen por Resonancia Magnética , Inutilidad Médica , Nefrectomía , Ensayos Clínicos Controlados no Aleatorios como Asunto , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Prueba de Estudio Conceptual , Quinazolinas/uso terapéutico , Resultado del Tratamiento , Carga Tumoral
13.
J Chem Phys ; 150(22): 220901, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31202243

RESUMEN

As molecular scientists have made progress in their ability to engineer nanoscale molecular structure, we face new challenges in our ability to engineer molecular dynamics (MD) and flexibility. Dynamics at the molecular scale differs from the familiar mechanics of everyday objects because it involves a complicated, highly correlated, and three-dimensional many-body dynamical choreography which is often nonintuitive even for highly trained researchers. We recently described how interactive molecular dynamics in virtual reality (iMD-VR) can help to meet this challenge, enabling researchers to manipulate real-time MD simulations of flexible structures in 3D. In this article, we outline various efforts to extend immersive technologies to the molecular sciences, and we introduce "Narupa," a flexible, open-source, multiperson iMD-VR software framework which enables groups of researchers to simultaneously cohabit real-time simulation environments to interactively visualize and manipulate the dynamics of molecular structures with atomic-level precision. We outline several application domains where iMD-VR is facilitating research, communication, and creative approaches within the molecular sciences, including training machines to learn potential energy functions, biomolecular conformational sampling, protein-ligand binding, reaction discovery using "on-the-fly" quantum chemistry, and transport dynamics in materials. We touch on iMD-VR's various cognitive and perceptual affordances and outline how these provide research insight for molecular systems. By synergistically combining human spatial reasoning and design insight with computational automation, technologies such as iMD-VR have the potential to improve our ability to understand, engineer, and communicate microscopic dynamical behavior, offering the potential to usher in a new paradigm for engineering molecules and nano-architectures.


Asunto(s)
Simulación de Dinámica Molecular , Programas Informáticos , Realidad Virtual , Benzamidinas/metabolismo , Ciclofilina A/química , Humanos , Subtipo H7N9 del Virus de la Influenza A/enzimología , Relaciones Interpersonales , Ligandos , Redes Neurales de la Computación , Neuraminidasa/metabolismo , Compuestos Orgánicos/química , Oseltamivir/metabolismo , Unión Proteica , Conformación Proteica , Teoría Cuántica , Tripsina/metabolismo
14.
World J Urol ; 36(12): 1899-1911, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30099580

RESUMEN

PURPOSE: Clear cell, papillary cell, and chromophobe renal cell carcinomas (RCCs) have now been well characterised thanks to large collaborative projects such as The Cancer Genome Atlas (TCGA). Not only has knowledge of the genomic landscape helped inform the development of new drugs, it also promises to fine tune prognostication. METHODS: A literature review was performed summarising the current knowledge on the genetic basis of RCC. RESULTS: The Von Hippel-Lindau (VHL) tumour suppressor gene undergoes bi-allelic knockout in the vast majority of clear cell RCCs. The next most prevalent aberrations include a cohort of chromatin-modifying genes with diverse roles including PBRM1, SETD2, BAP1, and KMD5C. The most common non-clear cell renal cancers have also undergone genomic profiling and are characterised by distinct genomic landscapes. Many recurrent mutations have prognostic value and show promise in aiding decisions regarding treatment stratification. Intra-tumour heterogeneity appears to hamper the clinical applicability of sparsely sampled tumours. Ways to abrogate heterogeneity will be required to optimise the genomic classification of tumours. CONCLUSION: The somatic mutational landscape of the more common renal cancers is well known. Correlation with outcome needs to be more comprehensively furnished, particularly for small renal masses, rarer non-clear cell renal cancers, and for all tumours undergoing targeted therapy.


Asunto(s)
Carcinoma de Células Renales/genética , Genómica , Neoplasias Renales/genética , Proteínas de Unión al ADN , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Mutación , Proteínas Nucleares/genética , Fosfohidrolasa PTEN/genética , Telomerasa/genética , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
15.
Eur Radiol Exp ; 8(1): 76, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38981998

RESUMEN

BACKGROUND: Clinical imaging tools to probe aggressiveness of renal masses are lacking, and T2-weighted imaging as an integral part of magnetic resonance imaging protocol only provides qualitative information. We developed high-resolution and accelerated T2 mapping methods based on echo merging and using k-t undersampling and reduced flip angles (TEMPURA) and tested their potential to quantify differences between renal tumour subtypes and grades. METHODS: Twenty-four patients with treatment-naïve renal tumours were imaged: seven renal oncocytomas (RO); one eosinophilic/oncocytic renal cell carcinoma; two chromophobe RCCs (chRCC); three papillary RCCs (pRCC); and twelve clear cell RCCs (ccRCC). Median, kurtosis, and skewness of T2 were quantified in tumours and in the normal-adjacent kidney cortex and were compared across renal tumour subtypes and between ccRCC grades. RESULTS: High-resolution TEMPURA depicted the tumour structure at improved resolution compared to conventional T2-weighted imaging. The lowest median T2 values were present in pRCC (high-resolution, 51 ms; accelerated, 45 ms), which was significantly lower than RO (high-resolution; accelerated, p = 0.012) and ccRCC (high-resolution, p = 0.019; accelerated, p = 0.008). ROs showed the lowest kurtosis (high-resolution, 3.4; accelerated, 4.0), suggestive of low intratumoural heterogeneity. Lower T2 values were observed in higher compared to lower grade ccRCCs (grades 2, 3 and 4 on high-resolution, 209 ms, 151 ms, and 106 ms; on accelerated, 172 ms, 160 ms, and 102 ms, respectively), with accelerated TEMPURA showing statistical significance in comparison (p = 0.037). CONCLUSIONS: Both high-resolution and accelerated TEMPURA showed marked potential to quantify differences across renal tumour subtypes and between ccRCC grades. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03741426 . Registered on 13 November 2018. RELEVANCE STATEMENT: The newly developed T2 mapping methods have improved resolution, shorter acquisition times, and promising quantifiable readouts to characterise incidental renal masses.


Asunto(s)
Neoplasias Renales , Imagen por Resonancia Magnética , Clasificación del Tumor , Humanos , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/clasificación , Neoplasias Renales/patología , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/clasificación , Carcinoma de Células Renales/patología , Adulto
16.
Nat Biotechnol ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37414936

RESUMEN

Characterization of somatic mutations at single-cell resolution is essential to study cancer evolution, clonal mosaicism and cell plasticity. Here, we describe SComatic, an algorithm designed for the detection of somatic mutations in single-cell transcriptomic and ATAC-seq (assay for transposase-accessible chromatin sequence) data sets directly without requiring matched bulk or single-cell DNA sequencing data. SComatic distinguishes somatic mutations from polymorphisms, RNA-editing events and artefacts using filters and statistical tests parameterized on non-neoplastic samples. Using >2.6 million single cells from 688 single-cell RNA-seq (scRNA-seq) and single-cell ATAC-seq (scATAC-seq) data sets spanning cancer and non-neoplastic samples, we show that SComatic detects mutations in single cells accurately, even in differentiated cells from polyclonal tissues that are not amenable to mutation detection using existing methods. Validated against matched genome sequencing and scRNA-seq data, SComatic achieves F1 scores between 0.6 and 0.7 across diverse data sets, in comparison to 0.2-0.4 for the second-best performing method. In summary, SComatic permits de novo mutational signature analysis, and the study of clonal heterogeneity and mutational burdens at single-cell resolution.

17.
Nat Commun ; 14(1): 5826, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749094

RESUMEN

Reninomas are exceedingly rare renin-secreting kidney tumours that derive from juxtaglomerular cells, specialised smooth muscle cells that reside at the vascular inlet of glomeruli. They are the central component of the juxtaglomerular apparatus which controls systemic blood pressure through the secretion of renin. We assess somatic changes in reninoma and find structural variants that generate canonical activating rearrangements of, NOTCH1 whilst removing its negative regulator, NRARP. Accordingly, in single reninoma nuclei we observe excessive renin and NOTCH1 signalling mRNAs, with a concomitant non-excess of NRARP expression. Re-analysis of previously published reninoma bulk transcriptomes further corroborates our observation of dysregulated Notch pathway signalling in reninoma. Our findings reveal NOTCH1 rearrangements in reninoma, therapeutically targetable through existing NOTCH1 inhibitors, and indicate that unscheduled Notch signalling may be a disease-defining feature of reninoma.


Asunto(s)
Neoplasias Renales , Renina , Humanos , Renina/metabolismo , Neoplasias Renales/metabolismo , Aparato Yuxtaglomerular/metabolismo , Aparato Yuxtaglomerular/patología , Glomérulos Renales/patología , Transducción de Señal/genética , Receptor Notch1/genética
18.
Cancers (Basel) ; 14(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053497

RESUMEN

Differentiating aggressive clear cell renal cell carcinoma (ccRCC) from indolent lesions is challenging using conventional imaging. This work prospectively compared the metabolic imaging phenotype of renal tumors using carbon-13 MRI following injection of hyperpolarized [1-13C]pyruvate (HP-13C-MRI) and validated these findings with histopathology. Nine patients with treatment-naïve renal tumors (6 ccRCCs, 1 liposarcoma, 1 pheochromocytoma, 1 oncocytoma) underwent pre-operative HP-13C-MRI and conventional proton (1H) MRI. Multi-regional tissue samples were collected using patient-specific 3D-printed tumor molds for spatial registration between imaging and molecular analysis. The apparent exchange rate constant (kPL) between 13C-pyruvate and 13C-lactate was calculated. Immunohistochemistry for the pyruvate transporter (MCT1) from 44 multi-regional samples, as well as associations between MCT1 expression and outcome in the TCGA-KIRC dataset, were investigated. Increasing kPL in ccRCC was correlated with increasing overall tumor grade (ρ = 0.92, p = 0.009) and MCT1 expression (r = 0.89, p = 0.016), with similar results acquired from the multi-regional analysis. Conventional 1H-MRI parameters did not discriminate tumor grades. The correlation between MCT1 and ccRCC grade was confirmed within a TCGA dataset (p < 0.001), where MCT1 expression was a predictor of overall and disease-free survival. In conclusion, metabolic imaging using HP-13C-MRI differentiates tumor aggressiveness in ccRCC and correlates with the expression of MCT1, a predictor of survival. HP-13C-MRI may non-invasively characterize metabolic phenotypes within renal cancer.

19.
Nat Commun ; 13(1): 4272, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35953478

RESUMEN

Germ cell tumours (GCTs) are a collection of benign and malignant neoplasms derived from primordial germ cells. They are uniquely able to recapitulate embryonic and extraembryonic tissues, which carries prognostic and therapeutic significance. The developmental pathways underpinning GCT initiation and histogenesis are incompletely understood. Here, we study the relationship of histogenesis and clonal diversification in GCTs by analysing the genomes and transcriptomes of 547 microdissected histological units. We find no correlation between genomic and histological heterogeneity. However, we identify unifying features including the retention of fetal developmental transcripts across tissues, expression changes on chromosome 12p, and a conserved somatic evolutionary sequence of whole genome duplication followed by clonal diversification. While this pattern is preserved across all GCTs, the developmental timing of the duplication varies between prepubertal and postpubertal cases. In addition, tumours of younger children exhibit distinct substitution signatures which may lend themselves as potential biomarkers for risk stratification. Our findings portray the extensive diversification of GCT tissues and genetic subclones as randomly distributed, while identifying overarching transcriptional and genomic features.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Neoplasias Testiculares , Niño , Genómica , Humanos , Masculino , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias Testiculares/genética , Transcriptoma/genética
20.
Cancer Cell ; 40(12): 1583-1599.e10, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36423636

RESUMEN

Tumor behavior is intricately dependent on the oncogenic properties of cancer cells and their multi-cellular interactions. To understand these dependencies within the wider microenvironment, we studied over 270,000 single-cell transcriptomes and 100 microdissected whole exomes from 12 patients with kidney tumors, prior to validation using spatial transcriptomics. Tissues were sampled from multiple regions of the tumor core, the tumor-normal interface, normal surrounding tissues, and peripheral blood. We find that the tissue-type location of CD8+ T cell clonotypes largely defines their exhaustion state with intra-tumoral spatial heterogeneity that is not well explained by somatic heterogeneity. De novo mutation calling from single-cell RNA-sequencing data allows us to broadly infer the clonality of stromal cells and lineage-trace myeloid cell development. We report six conserved meta-programs that distinguish tumor cell function, and find an epithelial-mesenchymal transition meta-program highly enriched at the tumor-normal interface that co-localizes with IL1B-expressing macrophages, offering a potential therapeutic target.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Transcriptoma , Perfilación de la Expresión Génica , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Transición Epitelial-Mesenquimal , Microambiente Tumoral/genética , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA