Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.743
Filtrar
1.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856043

RESUMEN

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Dendritas , Corteza Entorrinal , Proteínas de la Matriz Extracelular , Ratones Noqueados , Proteínas del Tejido Nervioso , Proteína Reelina , Serina Endopeptidasas , Animales , Corteza Entorrinal/metabolismo , Dendritas/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Ratones , Interneuronas/metabolismo , Neuronas/metabolismo , Señalización del Calcio
2.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35948005

RESUMEN

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Asunto(s)
Miocimia , Proteínas del Tejido Nervioso , Animales , Autoanticuerpos , Axones , Genómica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mamíferos/genética , Ratones , Proteínas del Tejido Nervioso/genética , Fenotipo , Genética Inversa
3.
Biochem Soc Trans ; 52(1): 301-318, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38348781

RESUMEN

Tau protein is associated with many neurodegenerative disorders known as tauopathies. Aggregates of tau are thought of as a main contributor to neurodegeneration in these diseases. Increasingly, evidence points to earlier, soluble conformations of abnormally modified monomers and multimeric tau as toxic forms of tau. The biological processes driving tau from physiological species to pathogenic conformations remain poorly understood, but certain avenues are currently under investigation including the functional consequences of various pathological tau changes (e.g. mutations, post-translational modifications (PTMs), and protein-protein interactions). PTMs can regulate several aspects of tau biology such as proteasomal and autophagic clearance, solubility, and aggregation. Moreover, PTMs can contribute to the transition of tau from normal to pathogenic conformations. However, our understating of how PTMs specifically regulate the transition of tau into pathogenic conformations is partly impeded by the relative lack of structured frameworks to assess and quantify these conformations. In this review, we describe a set of approaches that includes several in vitro assays to determine the contribution of PTMs to tau's transition into known pathogenic conformations. The approaches begin with different methods to create recombinant tau proteins carrying specific PTMs followed by validation of the PTMs status. Then, we describe a set of biochemical and biophysical assays that assess the contribution of a given PTM to different tau conformations, including aggregation, oligomerization, exposure of the phosphatase-activating domain, and seeding. Together, these approaches can facilitate the advancement of our understanding of the relationships between PTMs and tau conformations.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Proteínas tau/metabolismo , Procesamiento Proteico-Postraduccional , Tauopatías/metabolismo , Tauopatías/patología , Fosforilación , Proteínas Recombinantes/metabolismo , Enfermedad de Alzheimer/metabolismo
4.
Plant Physiol ; 193(2): 1416-1432, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37311198

RESUMEN

Root growth in maize (Zea mays L.) is regulated by the activity of the quiescent center (QC) stem cells located within the root apical meristem. Here, we show that despite being highly hypoxic under normal oxygen tension, QC stem cells are vulnerable to hypoxic stress, which causes their degradation with subsequent inhibition of root growth. Under low oxygen, QC stem cells became depleted of starch and soluble sugars and exhibited reliance on glycolytic fermentation with the impairment of the TCA cycle through the depressed activity of several enzymes, including pyruvate dehydrogenase (PDH). This finding suggests that carbohydrate delivery from the shoot might be insufficient to meet the metabolic demand of QC stem cells during stress. Some metabolic changes characteristic of the hypoxic response in mature root cells were not observed in the QC. Hypoxia-responsive genes, such as PYRUVATE DECARBOXYLASE (PDC) and ALCOHOL DEHYDROGENASE (ADH), were not activated in response to hypoxia, despite an increase in ADH activity. Increases in phosphoenolpyruvate (PEP) with little change in steady-state levels of succinate were also atypical responses to low-oxygen tensions. Overexpression of PHYTOGLOBIN 1 (ZmPgb1.1) preserved the functionality of the QC stem cells during stress. The QC stem cell preservation was underpinned by extensive metabolic rewiring centered around activation of the TCA cycle and retention of carbohydrate storage products, denoting a more efficient energy production and diminished demand for carbohydrates under conditions where nutrient transport may be limiting. Overall, this study provides an overview of metabolic responses occurring in plant stem cells during oxygen deficiency.


Asunto(s)
Oxígeno , Raíces de Plantas , Raíces de Plantas/metabolismo , Oxígeno/metabolismo , Meristema/metabolismo , Células Madre , Hipoxia/metabolismo , Carbohidratos
5.
Phys Rev Lett ; 132(12): 126401, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579227

RESUMEN

Moiré-pattern-based potential engineering has become an important way to explore exotic physics in a variety of two-dimensional condensed matter systems. While these potentials have induced correlated phenomena in almost all commonly studied 2D materials, monolayer graphene has remained an exception. We demonstrate theoretically that a single layer of graphene, when placed between two bulk boron nitride crystal substrates with the appropriate twist angles, can support a robust topological ultraflat band emerging as the second hole band. This is one of the simplest platforms to design and exploit topological flat bands.

6.
Chem Rec ; 24(1): e202300106, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37249417

RESUMEN

In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.

7.
Mol Cell Biochem ; 479(2): 431-444, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37084167

RESUMEN

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the mucosa of the colon, resulting in severe inflammation and ulcers. Genistein is a polyphenolic isoflavone present in several vegetables, such as soybeans and fava beans. Therefore, we conducted the following study to determine the therapeutic effects of genistein on UC in rats by influencing antioxidant activity and mitochondrial biogenesis and the subsequent effects on the apoptotic pathway. UC was induced in rats by single intracolonic administration of 2 ml of 4% acetic acid. Then, UC rats were treated with 25-mg/kg genistein. Colon samples were obtained to assess the gene and protein expression of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), caspase-3, caspase-8, and caspase-9. In addition, colon sections were stained with hematoxylin/eosin to investigate the cell structure. The microimages of UC rats revealed inflammatory cell infiltration, hemorrhage, and the destruction of intestinal glands, and these effects were improved by treatment with genistein. Finally, treatment with genistein significantly increased the expression of PGC-1, TFAM, Nrf2, HO-1, and BCL2 and reduced the expression of BAX, caspase-3, caspase-8, and caspase-9. In conclusion, genistein exerted therapeutic effects against UC in rats. This therapeutic activity involved enhancing antioxidant activity and increasing mitochondrial biogenesis, which reduced cell apoptosis.


Asunto(s)
Colitis Ulcerosa , Genisteína , Animales , Ratas , Genisteína/farmacología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Caspasa 3 , Caspasa 9 , Caspasa 8 , Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2 , Biogénesis de Organelos , Proteína X Asociada a bcl-2
8.
Chem Rec ; 24(1): e202300285, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37986206

RESUMEN

In recent years, a new class of highly crystalline advanced permeable materials covalent-organic frameworks (COFs) have garnered a great deal of attention thanks to their remarkable properties, such as their large surface area, highly ordered pores and channels, and controllable crystalline structures. The lower physical stability and electrical conductivity, however, prevent them from being widely used in applications like photocatalytic activities and innovative energy storage and conversion devices. For this reason, many studies have focused on finding ways to improve upon these interesting materials while also minimizing their drawbacks. This review article begins with a brief introduction to the history and major milestones of COFs development before moving on to a comprehensive exploration of the various synthesis methods and recent successes and signposts of their potential applications in carbon dioxide (CO2 ) sequestration, supercapacitors (SCs), lithium-ion batteries (LIBs), and hydrogen production (H2 -energy). In conclusion, the difficulties and potential of future developing with highly efficient COFs ideas for photocatalytic as well as electrochemical energy storage applications are highlighted.

9.
Chem Rec ; : e202300303, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38314935

RESUMEN

Nanotechnology has emerged as a pivotal tool in biomedical research, particularly in developing advanced sensing platforms for disease diagnosis and therapeutic monitoring. Since gold nanoparticles are biocompatible and have special optical characteristics, they are excellent choices for surface-enhanced Raman scattering (SERS) sensing devices. Integrating fluorescence characteristics further enhances their utility in real-time imaging and tracking within biological systems. The synergistic combination of SERS and fluorescence enables sensitive and selective detection of biomolecules at trace levels, providing a versatile platform for early cancer diagnosis and drug monitoring. In cancer detection, AuNPs facilitate the specific targeting of cancer biomarkers, allowing for early-stage diagnosis and personalized treatment strategies. The enhanced sensitivity of SERS, coupled with the tunable fluorescence properties of AuNPs, offers a powerful tool for the identification of cancer cells and their microenvironment. This dual-mode detection not only improves diagnostic accuracy but also enables the monitoring of treatment response and disease progression. In drug detection, integrating AuNPs with SERS provides a robust platform for identifying and quantifying pharmaceutical compounds. The unique spectral fingerprints obtained through SERS enable the discrimination of drug molecules even in complex biological matrices. Furthermore, the fluorescence property of AuNPs makes it easier to track medication distribution in real-time, maximizing therapeutic effectiveness and reducing adverse effects. Furthermore, the review explores the role of gold fluorescence nanoparticles in photodynamic therapy (PDT). By using the complementary effects of targeted drug release and light-induced cytotoxicity, SERS-guided drug delivery and photodynamic therapy (PDT) can increase the effectiveness of treatment against cancer cells. In conclusion, the utilization of gold fluorescence nanoparticles in conjunction with SERS holds tremendous potential for revolutionizing cancer detection, drug analysis, and photodynamic therapy. The dual-mode capabilities of these nanomaterials provide a multifaceted approach to address the challenges in early diagnosis, treatment monitoring, and personalized medicine, thereby advancing the landscape of biomedical applications.

10.
Chem Rec ; 24(1): e202300155, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37435960

RESUMEN

In recent years, flexible and wearable electronics such as smart cards, smart fabrics, bio-sensors, soft robotics, and internet-linked electronics have impacted our lives. In order to meet the requirements of more flexible and adaptable paradigm shifts, wearable products may need to be seamlessly integrated. A great deal of effort has been made in the last two decades to develop flexible lithium-ion batteries (FLIBs). The selection of suitable flexible materials is important for the development of flexible electrolytes self-supported and supported electrodes. This review is focused on the critical discussion of the factors that evaluate the flexibility of the materials and their potential path toward achieving the FLIBs. Following this analysis, we present how to evaluate the flexibility of the battery materials and FLIBs. We describe the chemistry of carbon-based materials, covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and MXene-based materials and their flexible cell design that represented excellent electrochemical performances during bending. Furthermore, the application of state-of-the-art solid polymer and solid electrolytes to accelerate the development of FLIBs is introduced. Analyzing the contributions and developments of different countries has also been highlighted in the past decade. In addition, the prospects and potential of flexible materials and their engineering are also discussed, providing the roadmap for further developments in this fast-evolving field of FLIB research.

11.
Chem Rec ; 24(1): e202200266, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36995072

RESUMEN

The ever-growing demand of human society for clean and reliable energy sources spurred a substantial academic interest in exploring the potential of biological resources for developing energy generation and storage systems. As a result, alternative energy sources are needed in populous developing countries to compensate for energy deficits in an environmentally sustainable manner. This review aims to evaluate and summarize the recent progress in bio-based polymer composites (PCs) for energy generation and storage. The articulated review provides an overview of energy storage systems, e. g., supercapacitors and batteries, and discusses the future possibilities of various solar cells (SCs), using both past research progress and possible future developments as a basis for discussion. These studies examine systematic and sequential advances in different generations of SCs. Developing novel PCs that are efficient, stable, and cost-effective is of utmost importance. In addition, the current state of high-performance equipment for each of the technologies is evaluated in detail. We also discuss the prospects, future trends, and opportunities regarding using bioresources for energy generation and storage, as well as the development of low-cost and efficient PCs for SCs.

12.
Chem Rec ; 24(1): e202300141, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37724006

RESUMEN

Electrical conductivity is very important property of nanomaterials for using wide range of applications especially energy applications. Metal-organic frameworks (MOFs) are notorious for their low electrical conductivity and less considered for usage in pristine forms. However, the advantages of high surface area, porosity and confined catalytic active sites motivated researchers to improve the conductivity of MOFs. Therefore, 2D electrical conductive MOFs (ECMOF) have been widely synthesized by developing the effective synthetic strategies. In this article, we have summarized the recent trends in developing the 2D ECMOFs, following the summary of potential applications in the various fields with future perspectives.

13.
Chem Rec ; 24(1): e202300145, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37358343

RESUMEN

The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high-performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high-performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs-based electrodes for RBs are discussed.

14.
Chem Rec ; 24(1): e202300235, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37753795

RESUMEN

Since the initial MXenes were discovered in 2011, several MXene compositions constructed using combinations of various transition metals have been developed. MXenes are ideal candidates for different applications in energy conversion and storage, because of their unique and interesting characteristics, which included good electrical conductivity, hydrophilicity, and simplicity of large-scale synthesis. Herein, we study the current developments in two-dimensional (2D) MXene nanosheets for energy storage and conversion technologies. First, we discuss the introduction to energy storage and conversion devices. Later, we emphasized on 2D MXenes and some specific properties of MXenes. Subsequently, research advances in MXene-based electrode materials for energy storage such as supercapacitors and rechargeable batteries is summarized. We provide the relevant energy storage processes, common challenges, and potential approaches to an acceptable solution for 2D MXene-based energy storage. In addition, recent advances for MXenes used in energy conversion devices like solar cells, fuel cells and catalysis is also summarized. Finally, the future prospective of growing MXene-based energy conversion and storage are highlighted.

15.
Parasite Immunol ; 46(3): e13030, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498004

RESUMEN

In previous studies, the inhibitory effect of chloroquine on NLRP3 inflammasome and heme production was documented. This may be employed as a double-bladed sword in schistosomiasis (anti-inflammatory and parasiticidal). In this study, chloroquine's impact on schistosomiasis mansoni was investigated. The parasitic load (worm/egg counts and reproductive capacity index [RCI]), i-Nos/Arg-1 expression, splenomegaly, hepatic insult and NLRP3-immunohistochemical expression were assessed in infected mice after receiving early and late repeated doses of chloroquine alone or dually with praziquantel. By early treatment, the least RCI was reported in dually treated mice (41.48 ± 28.58) with a significant reduction in worm/egg counts (3.50 ± 1.29/2550 ± 479.58), compared with either drug alone. A marked reduction in the splenic index was achieved by prolonged chloroquine administration (alone: 43.15 ± 5.67, dually: 36.03 ± 5.27), with significantly less fibrosis (15 ± 3.37, 14.25 ± 2.22) than after praziquantel alone (20.5 ± 2.65). Regarding inflammation, despite the praziquantel-induced significant decrease in NLRP3 expression, the inhibitory effect was marked after dual and chloroquine administration (liver: 3.13 ± 1.21/3.45 ± 1.23, spleen: 5.7 ± 1.6/4.63 ± 2.41). i-Nos RNA peaked with early/late chloroquine administration (liver: 68.53 ± 1.8/57.78 ± 7.14, spleen: 63.22 ± 2.06/62.5 ± 3.05). High i-Nos echoed with a parasiticidal and hepatoprotective effect and may indicate macrophage-1 polarisation. On the flip side, the chloroquine-induced low Arg-1 seemed to abate immune tolerance and probably macrophage-2 polarisation. Collectively, chloroquine synergised the praziquantel-schistosomicidal effect and minimised tissue inflammation, splenomegaly and hepatic fibrosis.


Asunto(s)
Enfermedades de los Roedores , Esquistosomiasis mansoni , Animales , Ratones , Cloroquina/farmacología , Regulación hacia Abajo , Reposicionamiento de Medicamentos , Inflamación , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Carga de Parásitos , Praziquantel/farmacología , Esquistosomiasis mansoni/tratamiento farmacológico , Esplenomegalia
16.
J Pediatr Gastroenterol Nutr ; 78(4): 800-809, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38314885

RESUMEN

OBJECTIVES: Adolescent and pediatric functional constipation (FC) is a common clinical problem. Currently, data on lubiprostone for the treatment of pediatric FC are scarce. This study investigated the efficacy and safety of lubiprostone in the treatment of pediatric FC. METHODS: In a single-blinded, randomized controlled study, we included 280 patients aged 8-18 years with FC. Patients were randomized either to a weight-based lubiprostone dose (n = 140) or conventional laxatives (n = 140), including lactulose, bisacodyl, or sodium picosulfate, for 12 weeks, followed by 4 weeks posttreatment follow-up. RESULTS: Improvement in constipation was achieved in 128 (91.4%) patients in the lubiprostone group, and in 48 (34.3%) patients of the conventional therapy group (p < 0.001) and was sustained after treatment discontinuation. One quarter of the lubiprostone group experienced the first spontaneous bowel motion within 48 h after dose initiation. A total of 75.7% of the lubiprostone group could achieve and sustain Bristol stool form of 3 or 4 during the last 4 weeks of therapy and through the 4 weeks of follow-up versus 50 (35.7%) patients in the conventional therapy group (p < 0.001). No life-threatening adverse drug reactions were encountered, and no treatment-related discontinuation. Mild self-limited colicky abdominal pain and headache were the most prevalent side effects in the lubiprostone group. CONCLUSIONS: Lubiprostone is an effective and well-tolerated pharmacotherapy for youthful age and pediatric age groups, which may alter the paradigm of pediatric FC treatment.


Asunto(s)
Estreñimiento , Laxativos , Humanos , Adolescente , Niño , Lubiprostona/uso terapéutico , Laxativos/uso terapéutico , Lactulosa/uso terapéutico , Bisacodilo/uso terapéutico , Resultado del Tratamiento
17.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38515285

RESUMEN

AIM: During liver transplantation, both hospital-acquired (HA) and community-acquired (CA) intra-abdominal infections (IAIs) are involved causing life-threatening diseases. Therefore, comparative studies of aerobic and facultative anaerobic HA-IAIs and CA-IAIs after liver transplantation surgery are necessary. METHODS AND RESULTS: The species of detected isolates (310) from intra-abdominal fluid were identified and classified into hospital-acquired intra-abdominal infections (HA-IAIs) and community-acquired intra-abdominal infections (CA-IAIs). Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii were the most commonly detected species. The resistant phenotypes were commonly detected among the HA-IAIs; however, the virulent phenotypes were the predominant strains of CA-IAIs. Regrettably, the resistance profiles were shocking, indicating the inefficacy of monotherapy in treating these isolates. Therefore, we confirmed the use of empirical combination therapies of amikacin and meropenem for treating all IAIs (FICI ≤ 0.5). Unfortunately, the high diversity and low clonality of all identified HA and CA-IAIs were announced with D-value in the range of 0.992-1. CONCLUSION: This diversity proves that there are infinite numbers of infection sources inside and outside healthcare centers.


Asunto(s)
Infecciones Comunitarias Adquiridas , Infección Hospitalaria , Infecciones Intraabdominales , Trasplante de Hígado , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Intraabdominales/tratamiento farmacológico , Trasplante de Hígado/efectos adversos , Infección Hospitalaria/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Escherichia coli/genética , Fenotipo , Hospitales , Hígado , Pruebas de Sensibilidad Microbiana
18.
J Nat Prod ; 87(5): 1384-1393, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38739531

RESUMEN

Bacteria have evolved various strategies to combat heavy metal stress, including the secretion of small molecules, known as metallophores. These molecules hold a potential role in the mitigation of toxic metal contamination from the environment (bioremediation). Herein, we employed combined comparative metabolomic and genomic analyses to study the metallophores excreted by Delftia lacustris DSM 21246. LCMS-metabolomic analysis of this bacterium cultured under iron limitation led to a suite of lipophilic metallophores exclusively secreted in response to iron starvation. Additionally, we conducted genome sequencing of the DSM 21246 strain using nanopore sequencing technology and employed antiSMASH to mine the genome, leading to the identification of a biosynthetic gene cluster (BGC) matching the known BGC responsible for delftibactin A production. The isolated suite of amphiphilic metallophores, termed delftibactins C-F (1-4), was characterized using various chromatographic, spectroscopic, and bioinformatic techniques. The planar structure of these compounds was elucidated through 1D and 2D NMR analyses, as well as LCMS/MS-based fragmentation studies. Notably, their structures differed from previously known delftibactins due to the presence of a lipid tail. Marfey's and bioinformatic analyses were employed to determine the absolute configuration of the peptide scaffold. Delftibactin A, a previously identified metallophore, has exhibited a gold biomineralizing property; compound 1 was tested for and also demonstrated this property.


Asunto(s)
Delftia , Delftia/metabolismo , Delftia/genética , Estructura Molecular , Metabolómica/métodos , Genoma Bacteriano , Familia de Multigenes
19.
J Asthma ; : 1-7, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38506494

RESUMEN

AIM: This study aims to assess the prevalence of asthma triggers and control status among pediatric asthmatic patients in Saudi Arabia. METHODS: From October 2015 to March 2016, an Arabic version of the Asthma Trigger Inventory questionnaire and asthma control test (ACT) were distributed to 200 parents of children diagnosed with asthma at the pulmonary clinic of King Fahad Medical City in Riyadh, Saudi Arabia. Data were collected and analyzed using the Statistical Package for Social Sciences (SPSS) software version 29. Descriptive statistics of the participants were presented in frequencies, percentages, means, and standard deviations for categorical variables. RESULTS: The survey data revealed that the most prevalent asthma triggers among pediatric asthmatic children in Saudi Arabia were Arabic incense (Bakhour) with a mean score of 3.76 (±1.3), followed by being excited 3.70 (±1.5), and stress at home 3.58 (±1.4). Furthermore, the degree of asthma control among children with asthma in Saudi Arabia was 72.0% with a mean score of 17.7 (±4.7) for the ACT, indicating partial degree of asthma. CONCLUSIONS: Arabic incense (Bakhour) and psychological stimuli emerged as significant determinants of asthma triggers in Saudi Arabian children diagnosed with asthma. Further studies are warranted to elucidate the physiological mechanisms underpinning the response to Arabic incense (Bakhour).

20.
Surg Endosc ; 38(2): 597-606, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38212468

RESUMEN

BACKGROUND: Postoperative pain is a common issue following laparoscopic cholecystectomy. This meta-analysis aimed to determine if active gas aspiration is more effective than passive gas aspiration in reducing postoperative pain and analgesic requirements. METHODOLOGY: The study conducted a systematic search of various databases, including Embase, Medline, and Cochrane Central Register of Controlled Trials (CENTRAL) via Ovid. It also searched trial registries and reference lists of included studies, with no date restrictions but limited to English language, up to December 21, 2022. The study included all randomized clinical trials that had documented elective laparoscopic cholecystectomy procedure and reported at least one relevant outcome. Articles that included subdiaphragmatic drain, intraperitoneal normal saline infusion, or pulmonary recruitment maneuver were excluded from the analysis. Two reviewers independently and in duplicate assessed the eligibility of studies and extracted data. The study reported findings according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The risk of bias of the included trials was assessed using the Revised Cochrane Risk of Bias Assessment Tool. The study used a random-effects model to pool data. RESULTS: This meta-analysis included 5 randomized clinical trials with 367 participants and found that active gas aspiration resulted in significantly lower residual gas volume and total analgesia requirements compared to passive gas aspiration. Active gas aspiration also led to significantly lower shoulder pain scores at 24 h postoperatively. However, no significant differences were observed in hospital stay duration or abdominal pain scores. CONCLUSION: The study found that active gas aspiration can be effective in reducing postoperative shoulder pain and analgesic requirements after laparoscopic cholecystectomy, which has important implications for patient care and healthcare costs. Importantly, this intervention does not impose any additional time or financial burden. However, further research is needed to evaluate its impact on other laparoscopic procedures.


Asunto(s)
Colecistectomía Laparoscópica , Humanos , Colecistectomía Laparoscópica/efectos adversos , Colecistectomía Laparoscópica/métodos , Dolor de Hombro/etiología , Dolor de Hombro/prevención & control , Dolor de Hombro/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Analgésicos/uso terapéutico , Dolor Postoperatorio/etiología , Dolor Postoperatorio/prevención & control , Dolor Postoperatorio/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA