Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 279: 120292, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572766

RESUMEN

Voxel-based morphometry (VBM) analysis is commonly used for localized quantification of gray matter volume (GMV). Several alternatives exist to implement a VBM pipeline. However, how these alternatives compare and their utility in applications, such as the estimation of aging effects, remain largely unclear. This leaves researchers wondering which VBM pipeline they should use for their project. In this study, we took a user-centric perspective and systematically compared five VBM pipelines, together with registration to either a general or a study-specific template, utilizing three large datasets (n>500 each). Considering the known effect of aging on GMV, we first compared the pipelines in their ability of individual-level age prediction and found markedly varied results. To examine whether these results arise from systematic differences between the pipelines, we classified them based on their GMVs, resulting in near-perfect accuracy. To gain deeper insights, we examined the impact of different VBM steps using the region-wise similarity between pipelines. The results revealed marked differences, largely driven by segmentation and registration steps. We observed large variability in subject-identification accuracies, highlighting the interpipeline differences in individual-level quantification of GMV. As a biologically meaningful criterion we correlated regional GMV with age. The results were in line with the age-prediction analysis, and two pipelines, CAT and the combination of fMRIPrep for tissue characterization with FSL for registration, reflected age information better.


Asunto(s)
Sustancia Gris , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Corteza Cerebral
2.
Neuroimage ; 270: 119947, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801372

RESUMEN

The difference between age predicted using anatomical brain scans and chronological age, i.e., the brain-age delta, provides a proxy for atypical aging. Various data representations and machine learning (ML) algorithms have been used for brain-age estimation. However, how these choices compare on performance criteria important for real-world applications, such as; (1) within-dataset accuracy, (2) cross-dataset generalization, (3) test-retest reliability, and (4) longitudinal consistency, remains uncharacterized. We evaluated 128 workflows consisting of 16 feature representations derived from gray matter (GM) images and eight ML algorithms with diverse inductive biases. Using four large neuroimaging databases covering the adult lifespan (total N = 2953, 18-88 years), we followed a systematic model selection procedure by sequentially applying stringent criteria. The 128 workflows showed a within-dataset mean absolute error (MAE) between 4.73-8.38 years, from which 32 broadly sampled workflows showed a cross-dataset MAE between 5.23-8.98 years. The test-retest reliability and longitudinal consistency of the top 10 workflows were comparable. The choice of feature representation and the ML algorithm both affected the performance. Specifically, voxel-wise feature spaces (smoothed and resampled), with and without principal components analysis, with non-linear and kernel-based ML algorithms performed well. Strikingly, the correlation of brain-age delta with behavioral measures disagreed between within-dataset and cross-dataset predictions. Application of the best-performing workflow on the ADNI sample showed a significantly higher brain-age delta in Alzheimer's and mild cognitive impairment patients compared to healthy controls. However, in the presence of age bias, the delta estimates in the patients varied depending on the sample used for bias correction. Taken together, brain-age shows promise, but further evaluation and improvements are needed for its real-world application.


Asunto(s)
Enfermedad de Alzheimer , Imagen por Resonancia Magnética , Adulto , Humanos , Flujo de Trabajo , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Aprendizaje Automático
3.
Neuroimage ; 256: 119275, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35513295

RESUMEN

Using machine-learning tools to predict individual phenotypes from neuroimaging data is one of the most promising and hence dynamic fields in systems neuroscience. Here, we perform a literature survey of the rapidly work on phenotype prediction in healthy subjects or general population to sketch out the current state and ongoing developments in terms of data, analysis methods and reporting. Excluding papers on age-prediction and clinical applications, which form a distinct literature, we identified a total 108 papers published since 2007. In these, memory, fluid intelligence and attention were most common phenotypes to be predicted, which resonates with the observation that roughly a quarter of the papers used data from the Human Connectome Project, even though another half recruited their own cohort. Sample size (in terms of training and external test sets) and prediction accuracy (from internal and external validation respectively) did not show significant temporal trends. Prediction accuracy was negatively correlated with sample size of the training set, but not the external test set. While known to be optimistic, leave-one-out cross-validation (LOO CV) was the prevalent strategy for model validation (n = 48). Meanwhile, 27 studies used external validation with external test set. Both numbers showed no significant temporal trends. The most popular learning algorithm was connectome-based predictive modeling introduced by the Yale team. Other common learning algorithms were linear regression, relevance vector regression (RVR), support vector regression (SVR), least absolute shrinkage and selection operator (LASSO), and elastic net. Meanwhile, the amount of data from self-recruiting studies (but not studies using open, shared dataset) was positively correlated with internal validation prediction accuracy. At the same time, self-recruiting studies also reported a significantly higher internal validation prediction accuracy than those using open, shared datasets. Data type and participant age did not significantly influence prediction accuracy. Confound control also did not influence prediction accuracy after adjusted for other factors. To conclude, most of the current literature is probably quite optimistic with internal validation using LOO CV. More efforts should be made to encourage the use of external validation with external test sets to further improve generalizability of the models.


Asunto(s)
Conectoma , Aprendizaje Automático , Algoritmos , Atención , Conectoma/métodos , Humanos , Fenotipo
4.
GigaByte ; 2024: gigabyte113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496213

RESUMEN

The fast-paced development of machine learning (ML) and its increasing adoption in research challenge researchers without extensive training in ML. In neuroscience, ML can help understand brain-behavior relationships, diagnose diseases and develop biomarkers using data from sources like magnetic resonance imaging and electroencephalography. Primarily, ML builds models to make accurate predictions on unseen data. Researchers evaluate models' performance and generalizability using techniques such as cross-validation (CV). However, choosing a CV scheme and evaluating an ML pipeline is challenging and, if done improperly, can lead to overestimated results and incorrect interpretations. Here, we created julearn, an open-source Python library allowing researchers to design and evaluate complex ML pipelines without encountering common pitfalls. We present the rationale behind julearn's design, its core features, and showcase three examples of previously-published research projects. Julearn simplifies the access to ML providing an easy-to-use environment. With its design, unique features, simple interface, and practical documentation, it poses as a useful Python-based library for research projects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA