Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Opt Lett ; 48(2): 518-521, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638499

RESUMEN

We study incoherently coupled two-frequency pulse compounds in waveguides with single zero-dispersion and zero-nonlinearity points. In such waveguides, supported by a negative nonlinearity, soliton dynamics can be obtained even in domains of normal dispersion. We demonstrate trapping of weak pulses by solitary-wave wells, forming nonlinear-photonics meta-atoms, and molecule-like bound-states of pulses. We study the impact of the Raman effect on these pulse compounds, finding that, depending on the precise subpulse configuration, they decelerate, accelerate, or are completely unaffected. Our results extend the range of systems in which two-frequency pulse compounds can be expected to exist and demonstrate further unique and unexpected behavior.

2.
Phys Rev Lett ; 128(9): 090502, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35302801

RESUMEN

Photons, acting as "flying qubits" in propagation geometries such as waveguides, appear unavoidably in the form of wave packets (pulses). The actual shape of the photonic wave packet as well as possible temporal and spectral correlations between the photons play a critical role in successful scalable computation. Currently, unentangled indistinguishable photons are considered a suitable resource for scalable photonic circuits. Here we show that using so-called coherent photon conversion, it is possible to construct flying-qubit gates which are not only insensitive to wave shapes of the photons and temporal and spectral correlations between them but which also fully preserve these wave shapes and correlations upon the processing. This allows the use of photons with correlations and purity in a very broad range for a scalable computation. Moreover, such gates can process entangled photonic wave packets even more effectively than unentangled ones.

3.
Opt Lett ; 44(19): 4909-4912, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568473

RESUMEN

Single-resonant and (signal/idler) double-resonant optical parametric oscillators differ fundamentally on the conversion efficiency back to the pump wave. The nonpresent idler in the single-resonant case allows for signal intracavity enhancement well beyond the pump power level. This paper answers the question, how the phase-matched back conversion in a doubly-resonant system can be overcome to reveal substantial power enhancement, and what parameters it depends on. In a degenerate double-resonant OPO (DROPO) pumped by a thin-disk oscillator, an enhancement up to a factor of four is shown experimentally. Support of a semianalytical theory is presented with exceptionally simple relations between enhancement and intracavity losses. Interestingly, our theory predicts no fundamental limit to the maximal field enhancement or conversion efficiency.

4.
Opt Lett ; 44(16): 4028-4031, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31415539

RESUMEN

Temporal-intensity contrast is crucial in intense laser-matter interaction to circumvent the undesirable expansion of steep high-density plasma prior to the interaction with the main pulse. Nonlinear elliptical polarization rotation in an argon filled hollow-core fiber is used here for cleaning pedestals/satellite pulses of a chirped-pulse-amplifier based Ti:Sapphire laser. This source provides ∼35 µJ energy and sub-4-fs duration, and the process has >50% internal efficiency, more than the most commonly used pulse cleaning methods. Further, the contrast is improved by 3 orders of magnitude when measured after amplifying the pulses to 16 TW using non-collinear optical parametric chirped pulse amplification with a prospect to even further enhancement.

5.
Opt Lett ; 44(5): 1202-1205, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30821748

RESUMEN

The interaction of subcycle pulses with quantum systems is considered when the pulse duration becomes much smaller than the timescales of electron oscillations. We show analytically that the interaction process in this case is governed by the electric pulse area. The efficient nonresonant excitation of quantum systems by subcycle pulses with a high degree of unipolarity is demonstrated. The results are confirmed by direct numerical solution of multilevel Bloch equations.

6.
Phys Rev Lett ; 122(12): 123606, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30978050

RESUMEN

We demonstrate quantum control of ^{9}Be^{+} ions directly implemented by an optical frequency comb. Based on numerical simulations of the relevant processes in ^{9}Be^{+} for different magnetic field regimes, we demonstrate a wide applicability when controlling the comb's spectral properties. We introduce a novel technique for the selective and efficient generation of a spectrally tailored narrow-bandwidth optical frequency comb near 313 nm. We experimentally demonstrate internal state control and internal-motional state coupling of ^{9}Be^{+} ions implemented by stimulated-Raman manipulation using a spectrally optimized optical frequency comb. Our pulsed laser approach is a key enabling step for the implementation of quantum logic and quantum information experiments in Penning traps.

7.
Opt Lett ; 43(1): 90-93, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29328203

RESUMEN

We individually control polarizations of 800 and 400 nm beams, which form a two-color femtosecond plasma filament in air irradiating a linear-to-elliptical THz signal. We detected a threshold-like appearance of THz ellipticity at the angle of ∼85° between the fundamental and second-harmonic field polarization directions. The simulations confirm the abrupt change of THz polarization and reveal that the weak ellipticity of the second harmonic is sufficient to generate essentially elliptical THz radiation.

8.
Opt Lett ; 42(11): 2189-2192, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569878

RESUMEN

We propose a strikingly simple method to form approximately unipolar half-cycle optical pulses via reflection of a single-cycle optical pulse from a thin flat metallic or dielectric layer. Unipolar pulses in reflection arise due to specifics of one-dimensional pulse propagation. Namely, we show that the field emitted by the layer is proportional to the velocity of the oscillating charges in the medium, instead of their acceleration. Besides, the oscillation velocity of the charges can be forced to keep a constant sign throughout the pulse duration. That is, reflection of ultrashort pulses from broad-area layers with nanometer-scale thickness can be very different from the common reflection in the case of longer pulses and thicker layers. This suggests a possibility of unusual transformations of few-cycle light pulses in completely linear optical systems.

9.
Phys Rev Lett ; 119(24): 243202, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29286725

RESUMEN

The ionization rate of an atom in a strong optical field can be resonantly enhanced by the presence of long-living atomic levels (so-called Freeman resonances). This process is most prominent in the multiphoton ionization regime, meaning that the ionization event takes many optical cycles. Nevertheless, here, we show that these resonances can lead to rapid subcycle-scale plasma buildup at the resonant values of the intensity in the pump pulse. The fast buildup can break the cycle-to-cycle symmetry of the ionization process, resulting in the generation of persistent macroscopic plasma currents which remain after the end of the pulse. This, in turn, gives rise to a broadband radiation of unusual spectral structure, forming a comb from terahertz to visible. This radiation contains fingerprints of the attosecond electron dynamics in Rydberg states during ionization.

10.
Opt Express ; 24(8): 8074-80, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137246

RESUMEN

We present a compact few-cycle 100 kHz OPCPA system pumped by a CPA-free picosecond Nd:YVO4 solid-state amplifier with all-optical synchronization to an ultra-broadband Ti:sapphire oscillator. This pump approach shows an exceptional conversion rate into the second harmonic of almost 78%. Efficient parametric amplification was realized by a two stage double-pass scheme with following chirped mirror compressor. The amount of superfluorescence was measured by an optical cross-correlation. Pulses with a duration of 8.7 fs at energies of 18 µJ are demonstrated. Due to the peak power of 1.26 GW, this simple OPCPA approach forms an ideal high repetition rate driving source for high-order harmonic generation.

11.
Opt Lett ; 41(21): 4983-4986, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27805665

RESUMEN

In the regime of resonant coherent light-matter interaction, light pulses may interact with each other indirectly via a polarization wave created by the other pulse. We show that such interaction allows fast creation and erasing of high-contrast dynamic population density gratings, as well as control of their period in a few-cycle regime. Our scheme uses counter-propagating optical pulses, which do not cross each other in the medium. The mechanism is able to work with pulse durations up to the single-cycle limit. Somewhat surprisingly, ultrafast grating wave vector control requires the generation of polarization waves with the phase velocity much smaller than that of light.

12.
Phys Rev Lett ; 114(18): 183901, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26001002

RESUMEN

Broadband ultrashort terahertz (THz) pulses can be produced using plasma generation in a noble gas ionized by femtosecond two-color pulses. Here we demonstrate that, by using multiple-frequency laser pulses, one can obtain a waveform which optimizes the free electron trajectories in such a way that they acquire the largest drift velocity. This allows us to increase the THz conversion efficiency to 2%, an unprecedented performance for THz generation in gases. In addition to the analytical study of THz generation using a local current model, we perform comprehensive 3D simulations accounting for propagation effects which confirm this prediction. Our results show that THz conversion via tunnel ionization can be greatly improved with well-designed multicolor pulses.

13.
Opt Express ; 21(1): 949-59, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23388988

RESUMEN

A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.

14.
Biomed Opt Express ; 14(11): 5656-5669, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38021146

RESUMEN

The use of ultrashort pulse lasers in medical treatments is increasing and is already an essential tool, particularly in the treatment of eyes, bones and skin. One of the main advantages of laser treatment is that it is fast and minimally invasive. Due to the interaction of ultrashort laser pulses with matter, X-rays can be generated during the laser ablation process. This is important not only for the safety of the patient, but also for the practitioner to ensure that the legally permissible dose is not exceeded. Although our results do not raise safety concerns for existing clinical applications, they might impact future developments at higher peak powers. In order to provide guidance to laser users in the medical field, this paper examines the X-ray emission spectra and dose of several biological materials and describes their dependence on the laser pulse energy.

15.
Opt Express ; 20(2): 912-7, 2012 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-22274438

RESUMEN

We present an ultra-widely tunable non-collinear optical parametric oscillator with an average output power of more than 3 W and a repetition frequency of 34 MHz. The system is pumped by the second harmonic of a femtosecond Yb:KLu(WO4)2 thin-disk laser oscillator. The wavelength of the signal pulse can be rapidly tuned over a wide range from the visible to the NIR just by scanning the resonator length.


Asunto(s)
Rayos Infrarrojos , Láseres de Colorantes , Óptica y Fotónica/instrumentación , Oscilometría/instrumentación , Diseño de Equipo , Luz , Óptica y Fotónica/métodos , Oscilometría/métodos
16.
Sci Rep ; 11(1): 11190, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045603

RESUMEN

The nonlinear interaction of copropagating optical solitons enables a large variety of intriguing bound-states of light. We here investigate the interaction dynamics of two initially superimposed fundamental solitons at distinctly different frequencies. Both pulses are located in distinct domains of anomalous dispersion, separated by an interjacent domain of normal dispersion, so that group velocity matching can be achieved despite a vast frequency gap. We demonstrate the existence of two regions with different dynamical behavior. For small velocity mismatch we observe a domain in which a single heteronuclear pulse compound is formed, which is distinct from the usual concept of soliton molecules. The binding mechanism is realized by the mutual cross phase modulation of the interacting pulses. For large velocity mismatch both pulses escape their mutual binding and move away from each other. The crossover phase between these two cases exhibits two localized states with different velocity, consisting of a strong trapping pulse and weak trapped pulse. We detail a simplified theoretical approach which accurately estimates the parameter range in which compound states are formed. This trapping-to-escape transition allows to study the limits of pulse-bonding as a fundamental phenomenon in nonlinear optics, opening up new perspectives for the all-optical manipulation of light by light.

17.
Rev Sci Instrum ; 92(12): 123004, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972439

RESUMEN

We present the design, integration, and operation of the novel vacuum ultraviolet (VUV) beamline installed at the free-electron laser (FEL) FLASH. The VUV source is based on high-order harmonic generation (HHG) in gas and is driven by an optical laser system synchronized with the timing structure of the FEL. Ultrashort pulses in the spectral range from 10 to 40 eV are coupled with the FEL in the beamline FL26, which features a reaction microscope (REMI) permanent endstation for time-resolved studies of ultrafast dynamics in atomic and molecular targets. The connection of the high-pressure gas HHG source to the ultra-high vacuum FEL beamline requires a compact and reliable system, able to encounter the challenging vacuum requirements and coupling conditions. First commissioning results show the successful operation of the beamline, reaching a VUV focused beam size of about 20 µm at the REMI endstation. Proof-of-principle photo-electron momentum measurements in argon indicate the source capabilities for future two-color pump-probe experiments.

18.
Phys Rev Lett ; 104(17): 173002, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20482105

RESUMEN

In kinematically complete studies we explore double ionization (DI) of Ne and Ar in the threshold regime (I>3x10{13} W/cm{2}) for 800 nm, 45 fs pulses. The basic differences are found in the two-electron momentum distributions-"correlation" (CO) for Ne and "anticorrelation" (ACO) for Ar-that can be partially explained theoretically within a 3D classical model including tunneling. Transverse electron momentum spectra provide insight into "Coulomb focusing" and point to correlated nonclassical dynamics. Finally, DI threshold intensities, CO as well as ACO regimes are predicted for both targets.

19.
Opt Express ; 17(18): 15525-33, 2009 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-19724550

RESUMEN

We report on quantum-limited noise performance of a mode-locked ytterbium all-fiber laser. The laser operates at a high normal net dispersion without dispersion compensation. We show that the naïve application of analytical models to such lasers leads to strongly underestimated timing jitter, whereas a numerical simulation is in reasonable agreement with measurements. The measured timing phase noise is found to be essentially limited by quantum noise influences and not by technical noise. Furthermore we show that the phase noise of different comb lines has a quasi-fix point at the center of the optical spectrum and that the jitter is translated into high carrier-envelope offset phase noise with a linewidth of around 3 MHz.

20.
Sci Rep ; 9(1): 7444, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31092890

RESUMEN

Up to now, full tunability of waveforms was possible only in electronics, up to radio-frequencies. Here we propose a new concept of producing few-cycle terahertz (THz) pulses with widely tunable waveforms. It is based on control of the phase delay between different parts of the THz wavefront using linear diffractive optical elements. Suitable subcycle THz wavefronts can be generated via coherent excitation of nonlinear low-frequency oscillators by few-cycle optical pulses. Using this approach it is possible to shape the electric field rather than the slow pulse envelope, obtaining, for instance, rectangular or triangular waveforms in the THz range. The method is upscalable to the optical range if the attosecond pump pulses are used.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA