Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 171(5): 1072-1081.e10, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149603

RESUMEN

Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/química , Metiltransferasas/química , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Factores de Transcripción/química , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Bacteriófago T7/enzimología , Bacteriófago T7/metabolismo , ADN Mitocondrial/química , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica , Humanos , Metiltransferasas/aislamiento & purificación , Metiltransferasas/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/aislamiento & purificación , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Cell ; 171(5): 1082-1093.e13, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29033127

RESUMEN

In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/genética , G-Cuádruplex , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , ADN Mitocondrial/química , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Elongación de la Transcripción Genética , Factores de Transcripción/química , Terminación de la Transcripción Genética
3.
Nucleic Acids Res ; 50(5): 2765-2781, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35191499

RESUMEN

Recognition of mammalian mitochondrial promoters requires the concerted action of mitochondrial RNA polymerase (mtRNAP) and transcription initiation factors TFAM and TFB2M. In this work, we found that transcript slippage results in heterogeneity of the human mitochondrial transcripts in vivo and in vitro. This allowed us to correctly interpret the RNAseq data, identify the bona fide transcription start sites (TSS), and assign mitochondrial promoters for > 50% of mammalian species and some other vertebrates. The divergent structure of the mammalian promoters reveals previously unappreciated aspects of mtDNA evolution. The correct assignment of TSS also enabled us to establish the precise register of the DNA in the initiation complex and permitted investigation of the sequence-specific protein-DNA interactions. We determined the molecular basis of promoter recognition by mtRNAP and TFB2M, which cooperatively recognize bases near TSS in a species-specific manner. Our findings reveal a role of mitochondrial transcription machinery in mitonuclear coevolution and speciation.


Asunto(s)
Mitocondrias/genética , Transcripción Genética , Animales , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción
4.
Mol Cell ; 49(1): 121-32, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23201127

RESUMEN

Human mitochondrial transcription factor A (TFAM) is a high-mobility group (HMG) protein at the nexus of mitochondrial DNA (mtDNA) replication, transcription, and inheritance. Little is known about the mechanisms underlying its posttranslational regulation. Here, we demonstrate that TFAM is phosphorylated within its HMG box 1 (HMG1) by cAMP-dependent protein kinase in mitochondria. HMG1 phosphorylation impairs the ability of TFAM to bind DNA and to activate transcription. We show that only DNA-free TFAM is degraded by the Lon protease, which is inhibited by the anticancer drug bortezomib. In cells with normal mtDNA levels, HMG1-phosphorylated TFAM is degraded by Lon. However, in cells with severe mtDNA deficits, nonphosphorylated TFAM is also degraded, as it is DNA free. Depleting Lon in these cells increases levels of TFAM and upregulates mtDNA content, albeit transiently. Phosphorylation and proteolysis thus provide mechanisms for rapid fine-tuning of TFAM function and abundance in mitochondria, which are crucial for maintaining and expressing mtDNA.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteasa La/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión , Ácidos Borónicos/farmacología , Bortezomib , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Genoma Mitocondrial , Células HEK293 , Células HeLa , Humanos , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Fosforilación , Proteasa La/antagonistas & inhibidores , Proteasa La/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis , Pirazinas/farmacología , Interferencia de ARN , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional
5.
J Biol Chem ; 291(26): 13432-5, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27226527

RESUMEN

Transcription is a highly regulated process in all domains of life. In human mitochondria, transcription of the circular genome involves only two promoters, called light strand promoter (LSP) and heavy strand promoter (HSP), located in the opposite DNA strands. Initiation of transcription occurs upon sequential assembly of an initiation complex that includes mitochondrial RNA polymerase (mtRNAP) and the initiation factors mitochondrial transcription factor A (TFAM) and TFB2M. It has been recently suggested that the transcription initiation factor TFAM binds to HSP and LSP in opposite directions, implying that the mechanisms of transcription initiation are drastically dissimilar at these promoters. In contrast, we found that binding of TFAM to HSP and the subsequent recruitment of mtRNAP results in a pre-initiation complex that is remarkably similar in topology and properties to that formed at the LSP promoter. Our data suggest that assembly of the pre-initiation complexes on LSP and HSP brings these transcription units in close proximity, providing an opportunity for regulatory proteins to simultaneously control transcription initiation in both mtDNA strands.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Regiones Promotoras Genéticas/fisiología , Factores de Transcripción/metabolismo , Iniciación de la Transcripción Genética/fisiología , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Humanos , Metiltransferasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Transcripción/genética
6.
Nature ; 478(7368): 269-73, 2011 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-21947009

RESUMEN

Transcription of the mitochondrial genome is performed by a single-subunit RNA polymerase (mtRNAP) that is distantly related to the RNAP of bacteriophage T7, the pol I family of DNA polymerases, and single-subunit RNAPs from chloroplasts. Whereas T7 RNAP can initiate transcription by itself, mtRNAP requires the factors TFAM and TFB2M for binding and melting promoter DNA. TFAM is an abundant protein that binds and bends promoter DNA 15-40 base pairs upstream of the transcription start site, and stimulates the recruitment of mtRNAP and TFB2M to the promoter. TFB2M assists mtRNAP in promoter melting and reaches the active site of mtRNAP to interact with the first base pair of the RNA-DNA hybrid. Here we report the X-ray structure of human mtRNAP at 2.5 Å resolution, which reveals a T7-like catalytic carboxy-terminal domain, an amino-terminal domain that remotely resembles the T7 promoter-binding domain, a novel pentatricopeptide repeat domain, and a flexible N-terminal extension. The pentatricopeptide repeat domain sequesters an AT-rich recognition loop, which binds promoter DNA in T7 RNAP, probably explaining the need for TFAM during promoter binding. Consistent with this, substitution of a conserved arginine residue in the AT-rich recognition loop, or release of this loop by deletion of the N-terminal part of mtRNAP, had no effect on transcription. The fingers domain and the intercalating hairpin, which melts DNA in phage RNAPs, are repositioned, explaining the need for TFB2M during promoter melting. Our results provide a new venue for the mechanistic analysis of mitochondrial transcription. They also indicate how an early phage-like mtRNAP lost functions in promoter binding and melting, which were provided by initiation factors in trans during evolution, to enable mitochondrial gene regulation and the adaptation of mitochondrial function to changes in the environment.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Mitocondrias/enzimología , Secuencia Rica en At/genética , Secuencia de Aminoácidos , Bacteriófago T7/enzimología , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Moldes Genéticos , Proteínas Virales/química
7.
Nucleic Acids Res ; 43(7): 3726-35, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25800739

RESUMEN

Regulation of transcription of mtDNA is thought to be crucial for maintenance of redox potential and vitality of the cell but is poorly understood at the molecular level. In this study we mapped the binding sites of the core transcription initiation factors TFAM and TFB2M on human mitochondrial RNA polymerase, and interactions of the latter with promoter DNA. This allowed us to construct a detailed structural model, which displays a remarkable level of interaction between the components of the initiation complex (IC). The architecture of the mitochondrial IC suggests mechanisms of promoter binding and recognition that are distinct from the mechanisms found in RNAPs operating in all domains of life, and illuminates strategies of transcription regulation developed at the very early stages of evolution of gene expression.


Asunto(s)
Mitocondrias/metabolismo , Modelos Biológicos , Transcripción Genética , Humanos
8.
Protein Expr Purif ; 123: 35-41, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27001424

RESUMEN

Hippocalcin is a 193 aa protein that is a member of the neuronal calcium sensor protein family, whose functions are regulated by calcium. Mice that lack the function of this protein are compromised in the long term potentiation aspect of memory generation. Recently, mutations in the gene have been linked with dystonia in human. The protein has no intrinsic enzyme activity but is known to bind to variety of target proteins. Very little information is available on how the protein executes its critical role in signaling pathways, except that it is regulated by binding of calcium. Further delineation of its function requires large amounts of pure protein. In this report, we present a single-step purification procedure that yields high quantities of the bacterially expressed, recombinant protein. The procedure may be adapted to purify the protein from inclusion bodies or cytosol in its myristoylated or non-myristoylated forms. MALDI-MS (in source decay) analyses demonstrates that the myristoylation occurs at the glycine residue. The protein is also biologically active as measured through tryptophan fluorescence, mobility shift and guanylate cyclase activity assays. Thus, further analyses of hippocalcin, both structural and functional, need no longer be limited by protein availability.


Asunto(s)
Escherichia coli/genética , Hipocalcina/genética , Hipocalcina/aislamiento & purificación , Animales , Cromatografía Liquida , Expresión Génica , Vectores Genéticos/genética , Hipocalcina/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Nucleic Acids Res ; 42(6): 3884-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24393772

RESUMEN

The mitochondrial genome is transcribed by a single-subunit T7 phage-like RNA polymerase (mtRNAP), structurally unrelated to cellular RNAPs. In higher eukaryotes, mtRNAP requires two transcription factors for efficient initiation-TFAM, a major nucleoid protein, and TFB2M, a transient component of mtRNAP catalytic site. The mechanisms behind assembly of the mitochondrial transcription machinery and its regulation are poorly understood. We isolated and identified a previously unknown human mitochondrial transcription intermediate-a pre-initiation complex that includes mtRNAP, TFAM and promoter DNA. Using protein-protein cross-linking, we demonstrate that human TFAM binds to the N-terminal domain of mtRNAP, which results in bending of the promoter DNA around mtRNAP. The subsequent recruitment of TFB2M induces promoter melting and formation of an open initiation complex. Our data indicate that the pre-initiation complex is likely to be an important target for transcription regulation and provide basis for further structural, biochemical and biophysical studies of mitochondrial transcription.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Iniciación de la Transcripción Genética , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Humanos , Proteínas Mitocondriales/metabolismo , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/metabolismo
10.
J Cell Biol ; 221(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35938958

RESUMEN

The BRCA1-A complex contains matching lysine-63 ubiquitin (K63-Ub) binding and deubiquitylating activities. How these functionalities are coordinated to effectively respond to DNA damage remains unknown. We generated Brcc36 deubiquitylating enzyme (DUB) inactive mice to address this gap in knowledge in a physiologic system. DUB inactivation impaired BRCA1-A complex damage localization and repair activities while causing early lethality when combined with Brca2 mutation. Damage response dysfunction in DUB-inactive cells corresponded to increased K63-Ub on RAP80 and BRCC36. Chemical cross-linking coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and cryogenic-electron microscopy (cryo-EM) analyses of isolated BRCA1-A complexes demonstrated the RAP80 ubiquitin interaction motifs are occupied by ubiquitin exclusively in the DUB-inactive complex, linking auto-inhibition by internal K63-Ub chains to loss of damage site ubiquitin recognition. These findings identify RAP80 and BRCC36 as autologous DUB substrates in the BRCA1-A complex, thus explaining the evolution of matching ubiquitin-binding and hydrolysis activities within a single macromolecular assembly.


Asunto(s)
Proteína BRCA1 , Daño del ADN , Proteínas de Unión al ADN , Enzimas Desubicuitinizantes , Chaperonas de Histonas , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Cromatografía Liquida , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Células HeLa , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Humanos , Ratones , Espectrometría de Masas en Tándem , Ubiquitina/metabolismo
11.
Data Brief ; 8: 78-81, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27284566

RESUMEN

In this data article we report on the purity and post translation modification of bacterially expressed and purified recombinant hippocalcin (HPCA): a member of the neuronal calcium sensor protein family, whose functions are regulated by calcium. MALDI-TOF in source decay (ISD) analysis was used to identify both the myristoylated or non-myristoylated forms of the protein. MALDI-TOF ISD data on the identity of the protein, amino acid sequence and myristoylation efficiency are provided. This data relates to the article "Single-Column Purification of the Tag-free, Recombinant Form of the Neuronal Calcium Sensor Protein, Hippocalcin Expressed in Eschericia coli" [1].

12.
PLoS One ; 11(12): e0167547, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27997545

RESUMEN

Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Proteómica/métodos , Albúmina Sérica Bovina/análisis , Programas Informáticos , Animales , Bovinos , Células HeLa , Humanos , Estructura Cuaternaria de Proteína , Albúmina Sérica Bovina/química
13.
Science ; 347(6221): 548-51, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25635099

RESUMEN

Coordinated replication and expression of the mitochondrial genome is critical for metabolically active cells during various stages of development. However, it is not known whether replication and transcription can occur simultaneously without interfering with each other and whether mitochondrial DNA copy number can be regulated by the transcription machinery. We found that interaction of human transcription elongation factor TEFM with mitochondrial RNA polymerase and nascent transcript prevents the generation of replication primers and increases transcription processivity and thereby serves as a molecular switch between replication and transcription, which appear to be mutually exclusive processes in mitochondria. TEFM may allow mitochondria to increase transcription rates and, as a consequence, respiration and adenosine triphosphate production without the need to replicate mitochondrial DNA, as has been observed during spermatogenesis and the early stages of embryogenesis.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Mitocondriales/metabolismo , ARN/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/química , G-Cuádruplex , Genoma Mitocondrial , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Genéticos , Modelos Moleculares , ARN/química , ARN Mitocondrial , Terminación de la Transcripción Genética
14.
Nat Struct Mol Biol ; 20(11): 1298-303, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24096365

RESUMEN

Here we report the crystal structure of the human mitochondrial RNA polymerase (mtRNAP) transcription elongation complex, determined at 2.65-Å resolution. The structure reveals a 9-bp hybrid formed between the DNA template and the RNA transcript and one turn of DNA both upstream and downstream of the hybrid. Comparisons with the distantly related RNA polymerase (RNAP) from bacteriophage T7 indicates conserved mechanisms for substrate binding and nucleotide incorporation but also strong mechanistic differences. Whereas T7 RNAP refolds during the transition from initiation to elongation, mtRNAP adopts an intermediary conformation that is capable of elongation without refolding. The intercalating hairpin that melts DNA during T7 RNAP initiation separates RNA from DNA during mtRNAP elongation. Newly synthesized RNA exits toward the pentatricopeptide repeat (PPR) domain, a unique feature of mtRNAP with conserved RNA-recognition motifs.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Cristalografía por Rayos X , ADN Mitocondrial/química , Humanos , Conformación Proteica , ARN/química , ARN Mitocondrial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA