Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Phys Chem A ; 128(14): 2683-2702, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38534023

RESUMEN

We report calculations of the high-harmonic generation spectra of the C60 fullerene molecule carried out by employing a diverse set of real-time time-dependent quantum chemical methods. All methodologies involve expanding the propagated electronic wave function in bases consisting of the ground and singly excited time-independent eigenstates obtained through the solution of the corresponding linear-response equations. We identify the correlation and exchange effect in the spectra by comparing the results from methods relying on the Hartree-Fock reference determinant with those obtained using approaches based on the density functional theory with different exchange-correlation functionals. The effect of the full random-phase approximation treatment of the excited electronic states is also analyzed and compared with the configuration interaction singles and the Tamm-Dancoff approximation. We also showcase the fact that the real-time extension of the semiempirical method INDO/S can be effectively applied for an approximate description of laser-driven dynamics in large systems.

2.
J Chem Phys ; 156(17): 174106, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525652

RESUMEN

In this paper, we investigate the effects of full electronic correlation on high harmonic generation in the helium atom subjected to laser pulses of extremely high intensity. To do this, we perform real-time propagations of helium atom wavefunction using quantum chemistry methods coupled to Gaussian basis sets. Calculations are performed within the real-time time-dependent configuration interaction framework at two levels of theory: time-dependent configuration interaction with single excitations (uncorrelated method) and time-dependent full configuration interaction (fully correlated method). The electronic wavefunction is expanded in Dunning basis sets supplemented with functions adapted to describing highly excited and continuum states. We also compare the time-dependent configuration interaction results with grid-based propagations of the helium atom within the single-active-electron approximation. Our results show that when including the dynamical electron correlation, a noticeable improvement to the description of high harmonic generation (HHG) can be achieved in terms of, e.g., a more constant intensity in the lower energy part of the harmonic plateau. However, such effects can be captured only if the basis set used suffices to reproduce the most basic features, such as the HHG cutoff position, at the uncorrelated level of theory.

3.
Proc Natl Acad Sci U S A ; 116(17): 8173-8177, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30952783

RESUMEN

Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of neutral carbonyl disulfide (CS2) in the [Formula: see text] excited electronic state using laser-induced electron diffraction (LIED). We unambiguously identify the ultrafast symmetric stretching and bending of the field-dressed neutral CS2 molecule with combined picometer and attosecond resolution using intrapulse pump-probe excitation and measurement. We invoke the Renner-Teller effect to populate the [Formula: see text] excited state in neutral CS2, leading to bending and stretching of the molecule. Our results demonstrate the sensitivity of LIED in retrieving the geometric structure of CS2, which is known to appear as a two-center scatterer.

4.
J Chem Phys ; 154(9): 094111, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685145

RESUMEN

A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view, this is still a challenging task, as new approaches to solve the time-dependent Schrödinger equation with both good accuracy and efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have been frequently and successfully used to capture the electron dynamics in small one- or two-electron systems. However, as the main focus of attoscience shifts toward many-electron systems, such techniques are no longer effective and need to be replaced by more approximate but computationally efficient ones. In this paper, we explore the increasingly popular method of expanding the wavefunction of the examined system into a linear combination of atomic orbitals and present a novel systematic scheme for constructing an optimal Gaussian basis set suitable for the description of excited and continuum atomic or molecular states. We analyze the performance of the proposed basis sets by carrying out a series of time-dependent configuration interaction calculations for the hydrogen atom in fields of intensity varying from 5 × 1013 W/cm2 to 5 × 1014 W/cm2. We also compare the results with the data obtained using Gaussian basis sets proposed previously by other authors.

5.
Rep Prog Phys ; 82(11): 116001, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31226696

RESUMEN

This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagiellonski, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrödinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach the SFA is a method to solve the TDSE, in which the non-perturbative interactions are described by including continuum-continuum interactions in a systematic perturbation-like theory. In this review we focus on recent applications of the SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main novel part of the presented theory concerns generalizations of the SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between electron impact ionization and resonant excitation with subsequent ionization; (ii) time-dependent treatment in the single active electron approximation of 'large' molecules and targets which are themselves undergoing dynamics during the HHG or ATI processes. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. We dedicate this work to the memory of Bertrand Carré, who passed away in March 2018 at the age of 60.

6.
J Chem Phys ; 151(2): 024306, 2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31301712

RESUMEN

Observing changes in molecular structure requires atomic-scale Ångstrom and femtosecond spatio-temporal resolution. We use the Fourier transform (FT) variant of laser-induced electron diffraction (LIED), FT-LIED, to directly retrieve the molecular structure of H2O+ with picometer and femtosecond resolution without a priori knowledge of the molecular structure nor the use of retrieval algorithms or ab initio calculations. We identify a symmetrically stretched H2O+ field-dressed structure that is most likely in the ground electronic state. We subsequently study the nuclear response of an isolated water molecule to an external laser field at four different field strengths. We show that upon increasing the laser field strength from 2.5 to 3.8 V/Å, the O-H bond is further stretched and the molecule slightly bends. The observed ultrafast structural changes lead to an increase in the dipole moment of water and, in turn, a stronger dipole interaction between the nuclear framework of the molecule and the intense laser field. Our results provide important insights into the coupling of the nuclear framework to a laser field as the molecular geometry of H2O+ is altered in the presence of an external field.

7.
J Chem Phys ; 146(3): 034108, 2017 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-28109234

RESUMEN

We introduce a new method for the computation of the transition moments between the excited electronic states based on the expectation value formalism of the coupled cluster theory [B. Jeziorski and R. Moszynski, Int. J. Quantum Chem. 48, 161 (1993)]. The working expressions of the new method solely employ the coupled cluster operator T and an auxiliary operator S that is expressed as a finite commutator expansion in terms of T and T†. In the approximation adopted in the present paper, the cluster expansion is limited to single, double, and linear triple excitations. The computed dipole transition probabilities for the singlet-singlet and triplet-triplet transitions in alkali earth atoms agree well with the available theoretical and experimental data. In contrast to the existing coupled cluster response theory, the matrix elements obtained by using our approach satisfy the Hermitian symmetry even if the excitations in the cluster operator are truncated, but the operator S is exact. The Hermitian symmetry is slightly broken if the commutator series for the operator S are truncated. As a part of the numerical evidence for the new method, we report calculations of the transition moments between the excited triplet states which have not yet been reported in the literature within the coupled cluster theory. Slater-type basis sets constructed according to the correlation-consistency principle are used in our calculations.

8.
Chemistry ; 21(14): 5496-503, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25693575

RESUMEN

Organozinc hydroxides, RZnOH, possessing the proton-reactive alkylzinc group and the CO2 -reactive Zn-OH group, represent an intriguing group of organometallic precursors for the synthesis of novel zinc carbonates. Comprehensive experimental and computational investigations on 1) solution and solid-state behavior of tBuZnOH (1) species in the presence of Lewis bases, namely, THF and 4-methylpyridine; 2) step-by-step sequence of the reaction between 1 and CO2; and 3) the effect of a donor ligand and/or an excess of tBu2Zn as an external proton acceptor on the reaction course are reported. DFT calculations for the insertion of carbon dioxide into the dinuclear alkylzinc hydroxide 12 are fully consistent with (1)H NMR spectroscopy studies and indicate that this process is a multistep reaction, in which the insertion of CO2 seems to be the rate-determining step. Moreover, DFT studies show that the mechanism of the rearrangement between key intermediates, that is, the primary alkylzinc bicarbonate with a proximal position of hydrogen and the secondary alkylzinc bicarbonate with a distal position of hydrogen, most likely proceeds through internal rotation of the dinuclear bicarbonate.

9.
J Chem Phys ; 142(12): 124102, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25833560

RESUMEN

Explicitly correlated quantum chemical calculations require calculations of five types of two-electron integrals beyond the standard electron repulsion integrals. We present a novel scheme, which utilises general ideas of the McMurchie-Davidson technique, to compute these integrals when the so-called "range-separated" correlation factor is used. This correlation factor combines the well-known short range behaviour resulting from the electronic cusp condition, with the exact long-range asymptotics derived for the helium atom [Lesiuk, Jeziorski, and Moszynski, J. Chem. Phys. 139, 134102 (2013)]. Almost all steps of the presented procedure are formulated recursively, so that an efficient implementation and control of the precision are possible. Additionally, the present formulation is very flexible and general, and it allows for use of an arbitrary correlation factor in the electronic structure calculations with minor or no changes.

10.
Phys Rev Lett ; 112(11): 113201, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702365

RESUMEN

Magnetically tunable Feshbach resonances for polar paramagnetic ground-state diatomics are too narrow to allow for magnetoassociation starting from trapped, ultracold atoms. We show that nonresonant light can be used to engineer the Feshbach resonances in their position and width. For nonresonant field intensities of the order of 10(9) W/cm(2), we find the width to be increased by 3 orders of magnitude, reaching a few Gauss. This opens the way for producing ultracold molecules with sizable electric and magnetic dipole moments and thus for many-body quantum simulations with such particles.

11.
J Phys Chem A ; 118(33): 6584-94, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24824559

RESUMEN

A detailed characterization of the interaction between the most abundant molecules in air is important for the understanding of a variety of phenomena in atmospherical science. A completely ab initio global potential energy surface (PES) for the O2((3)Σg(­)) + N2((1)Σg(+)) interaction is reported for the first time. It has been obtained with the symmetry-adapted perturbation theory utilizing a density functional description of monomers [SAPT(DFT)] extended to treat the interaction involving high-spin open-shell complexes. The computed interaction energies of the complex are in a good agreement with those obtained by using the spin-restricted coupled cluster methodology with singles, doubles, and noniterative triple excitations [RCCSD(T)]. A spherical harmonics expansion of the interaction potential containing a large number of terms due to the anisotropy of the interaction has been built from the ab initio data. The expansion coefficients, which are functions of the intermolecular distance, are matched in the long-range with the analytical functions based on the recent ab initio calculations of the electric properties of the monomers [M. Bartolomei et al. J. Comput. Chem. 2011, 32, 279]. The PES is tested against the second virial coefficient B(T) data and the integral cross sections measured with rotationally hot effusive beams, leading in both cases to a very good agreement. The lowest lying states of the complex have been computed and relevant spectroscopic features of the interacting complex are reported. A comparison with a previous experimentally derived PES is also provided.

12.
J Chem Phys ; 141(12): 124109, 2014 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-25273414

RESUMEN

Theory of one-electron transition density matrices has been formulated within the time-independent coupled cluster method for the polarization propagator [R. Moszynski, P. S. Zuchowski, and B. Jeziorski, Coll. Czech. Chem. Commun. 70, 1109 (2005)]. Working expressions have been obtained and implemented with the coupled cluster method limited to single, double, and linear triple excitations (CC3). Selected dipole and quadrupole transition probabilities of the alkali earth atoms, computed with the new transition density matrices are compared to the experimental data. Good agreement between theory and experiment is found. The results obtained with the new approach are of the same quality as the results obtained with the linear response coupled cluster theory. The one-electron density matrices for the ground state in the CC3 approximation have also been implemented. The dipole moments for a few representative diatomic molecules have been computed with several variants of the new approach, and the results are discussed to choose the approximation with the best balance between the accuracy and computational efficiency.

13.
J Chem Phys ; 139(13): 134102, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24116547

RESUMEN

In currently most popular explicitly correlated electronic structure theories, the dependence of the wave function on the interelectronic distance rij is built via the correlation factor f(r(ij)). While the short-distance behavior of this factor is well understood, little is known about the form of f(r(ij)) at large r(ij). In this work, we investigate the optimal form of f(r12) on the example of the helium atom and helium-like ions and several well-motivated models of the wave function. Using the Rayleigh-Ritz variational principle, we derive a differential equation for f(r12) and solve it using numerical propagation or analytic asymptotic expansion techniques. We found that for every model under consideration, f(r12) behaves at large r(ij) as r12(ρ)e(Br12) and obtained simple analytic expressions for the system dependent values of ρ and B. For the ground state of the helium-like ions, the value of B is positive, so that f(r12) diverges as r12 tends to infinity. The numerical propagation confirms this result. When the Hartree-Fock orbitals, multiplied by the correlation factor, are expanded in terms of Slater functions r(n)e(-ßr), n = 0,...,N, the numerical propagation reveals a minimum in f(r12) with depth increasing with N. For the lowest triplet state, B is negative. Employing our analytical findings, we propose a new "range-separated" form of the correlation factor with the short- and long-range r12 regimes approximated by appropriate asymptotic formulas connected by a switching function. Exemplary calculations show that this new form of f(r12) performs somewhat better than the correlation factors used thus far in the standard R12 or F12 theories.

14.
J Chem Phys ; 139(16): 164124, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24182021

RESUMEN

Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

15.
J Chem Theory Comput ; 19(4): 1177-1185, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36734970

RESUMEN

We present a new method of calculation of the dispersion energy in the second-order symmetry-adapted perturbation theory. Using the Longuet-Higgins integral and time-independent coupled-cluster response theory, one shows that the general expression for the dispersion energy can be written in terms of cluster amplitudes and the excitation operators σ, which can be obtained by solving a linear equation. We introduced an approximate scheme dubbed CCPP2(T) for the dispersion energy accurate to the second order of intramonomer correlation, which includes certain classes to be summed to infinity. Assessment of the accuracy of the CCPP2(T) dispersion energy against the FCI dispersion for He2 demonstrates its high accuracy. For more complex systems, CCPP2(T) matches the accuracy of the best methods introduced for calculations of dispersion so far. The method can be extended to higher-order levels of excitations, providing a systematically improvable theory of dispersion interaction.

16.
Chemistry ; 18(18): 5637-45, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22431330

RESUMEN

We report on investigations of reactions of tBu(2)Zn with 8-hydroxyquinoline (q-H) and the influence of water on the composition and structure of the final product. A new synthetic approach to photoluminescent zinc complexes with quinolinate ligands was developed that allowed the isolation of a series of structurally diverse and novel alkylzinc 8-hydroxyquinolate complexes: the trinuclear alkylzinc aggregate [tBuZn(q)](3) (1(3)), the pentanuclear oxo cluster [(tBu)(3)Zn(5)(µ(4) -O)(q)(5)] (2), and the tetranuclear hydroxo cluster [Zn(q)(2)](2)[tBuZn(OH)](2) (3). All compounds were characterized in solution by (1)H NMR, IR, UV/Vis, and photoluminescence (PL) spectroscopy, and in the solid state by X-ray diffraction, TGA, and PL studies. Density functional theory calculations were also carried out for these new Zn(II) complexes to rationalize their luminescence behavior. A detailed analysis of the supramolecular structures of 2 and 3 shows that the unique shape of the corresponding single molecules leads to the formation of extended 3D networks with 1D open channels. Varying the stoichiometry, shape, and supramolecular structure of the resulting complexes leads to changes in their spectroscopic properties. The close-packed crystal structure of 1(3) shows a redshifted emission maximum in comparison to the porous crystal structure of 2 and the THF-solvated structure of 3.

17.
J Chem Phys ; 136(19): 194306, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22612094

RESUMEN

State-of-the-art ab initio techniques have been applied to compute the potential energy curves for the electronic states in the A(1)Σ(u)(+), c(3)Π(u), and a(3)Σ(u)(+) manifold of the strontium dimer, the spin-orbit and nonadiabatic coupling matrix elements between the states in the manifold, and the electric transition dipole moment from the ground X(1)Σ(g)(+) to the nonrelativistic and relativistic states in the A+c+a manifold. The potential energy curves and transition moments were obtained with the linear response (equation of motion) coupled cluster method limited to single, double, and linear triple excitations for the potentials and limited to single and double excitations for the transition moments. The spin-orbit and nonadiabatic coupling matrix elements were computed with the multireference configuration interaction method limited to single and double excitations. Our results for the nonrelativistic and relativistic (spin-orbit coupled) potentials deviate substantially from recent ab initio calculations. The potential energy curve for the spectroscopically active (1)0(u)(+) state is in quantitative agreement with the empirical potential fitted to high-resolution Fourier transform spectra [A. Stein, H. Knöckel, and E. Tiemann, Eur. Phys. J. D 64, 227 (2011)]. The computed ab initio points were fitted to physically sound analytical expressions, and used in converged coupled channel calculations of the rovibrational energy levels in the A+c+a manifold and line strengths for the A(1)Σ(u)(+)←X(1)Σ(g (+) transitions. Positions and lifetimes of quasi-bound Feshbach resonances lying above the (1)S(0) + (3)P(1) dissociation limit were also obtained. Our results reproduce (semi)quantitatively the experimental data observed thus far. Predictions for on-going and future experiments are also reported.

18.
Phys Rev Lett ; 107(27): 273001, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22243308

RESUMEN

The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.

19.
Phys Chem Chem Phys ; 13(42): 19077-88, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-21842106

RESUMEN

We present quantum-theoretical studies of collisions between an open-shell S-state atom and a (2)Π-state molecule in the presence of a magnetic field. We analyze the collisional Hamiltonian and discuss possible mechanisms for inelastic collisions in such systems. The theory is applied to the collisions of the nitrogen atom ((4)S) with the OH molecule, with both collision partners initially in fully spin-stretched (magnetically trappable) states, assuming that the interaction takes place exclusively on the two high-spin (quintet) potential energy surfaces. The surfaces for the quintet states are obtained from spin-unrestricted coupled-cluster calculations with single, double, and noniterative triple excitations. We find substantial inelasticity, arising from strong couplings due to the anisotropy of the interaction potential and the anisotropic spin-spin dipolar interaction. The mechanism involving the dipolar interaction dominates for small magnetic field strengths and ultralow collision energies, while the mechanism involving the potential anisotropy prevails when the field strength is larger (above 100 G) or the collision energy is higher (above 1 mK). The numerical results suggest that sympathetic cooling of magnetically trapped OH by collisions with ultracold N atoms will not be successful at higher temperatures.

20.
Phys Chem Chem Phys ; 13(42): 18893-904, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-21863177

RESUMEN

State-of-the-art ab initio techniques have been applied to compute the potential energy curves for the SrYb molecule in the Born-Oppenheimer approximation for the electronic ground state and the first fifteen excited singlet and triplet states. All the excited state potential energy curves were computed using the equation of motion approach within the coupled-cluster singles and doubles framework and large basis-sets, while the ground state potential was computed using the coupled cluster method with single, double, and noniterative triple excitations. The leading long-range coefficients describing the dispersion interactions at large interatomic distances are also reported. The electric transition dipole moments have been obtained as the first residue of the polarization propagator computed with the linear response coupled-cluster method restricted to single and double excitations. Spin-orbit coupling matrix elements have been evaluated using the multireference configuration interaction method restricted to single and double excitations with a large active space. The electronic structure data were employed to investigate the possibility of forming deeply bound ultracold SrYb molecules in an optical lattice in a photoassociation experiment using continuous-wave lasers. Photoassociation near the intercombination line transition of atomic strontium into the vibrational levels of the strongly spin-orbit mixed b(3)Σ(+), a(3)Π, A(1)Π, and C(1)Π states with subsequent efficient stabilization into the v'' = 1 vibrational level of the electronic ground state is proposed. Ground state SrYb molecules can be accumulated by making use of collisional decay from v'' = 1 to v'' = 0. Alternatively, photoassociation and stabilization to v'' = 0 can proceed via stimulated Raman adiabatic passage provided that the trapping frequency of the optical lattice is large enough and phase coherence between the pulses can be maintained over at least tens of microseconds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA