Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Zh | MEDLINE | ID: mdl-30120914

RESUMEN

Objective: To identify the yellow family genes in Aedes aegypti and analyze the gene structure, phylogenetic evolution and their expression at various developmental stages and in different tissues. Methods: The yellow gene family was identified in Ae. aegypti by blasting the Ae. aegypti genome database with the amino acid sequence of the MRJP domain of Dm-yellow gene of Drosophila melanogaster(GenBank No. AAF45497). The physico-chemical property and domains were analyzed with the on-line ExPaSy software. The signal peptide was predicted using SignalP4.1 software. Sequence alignment and the phylogenetic tree were made through combined use of DNAstar, MEGA6.0 and GeneDoc. Total RNA was extracted from Ae. aegypti, cDNA was generated, and expression of the yellow family genes at various developmental stages (egg, first to fourth instar, pupa, non-blood-fed female and male mosquitoes) and in different tissues (salivary gland, midgut, fat body, and ovary) was quantified using qRT-PCR. Results: Twelve yellow genes were identified from Ae. aegypti genome: Aa-yellow, Aa-yellow-b, Aa-yellow-c, Aa-yellow-d, Aa-yellow-e, Aa-yellow-f2, Aa-yellow-fb, Aa-yellow-fc, Aa-yellow-g, Aa-yellow-g2, Aa-yellow-h, and Aa-yellow-x. Bioinformatics demonstrated that all covered the MRJP domain and a signal peptide sequence. Sequence alignment revealed low (15%-49%) homology among the proteins, but high homology(60%) in the conserved domain. According to the phylogenetic tree analysis, the encoded 12 YELLOW proteins were classified into 5 subfamilies, and 11 had orthologues in D. melanogaster. qRT-PCR revealed high expression of Aa-yellow-d (0.018 9) and Aa-yellow-x (0.023 5) in male Ae. aegypti (P<0.01 or P<0.05); high expression of Aa-yellow-fc (0.024 8, 0.034 9) in female Ae. aegypti and in the salivary gland (P<0.01); high expression of Aa-yellow-f2 (0.093 4) in the second instar stage (P<0.01); high expression of Aa-yellow (0.562 1), Aa-yellow-e (0.004 4), and Aa-yellow-fb (0.008 4) in the third instar stage (P<0.05); and high expression of Aa-yellow (0.569 4), Aa-yellow-e (0.027 0), Aa-yellow-f2 (0.006 5), Aa-yellow-fb (0.001 0), Aa-yellow-h (0.084 8) and Aa-yellow-x (0.015 1) in the ovary. Genes other than Aa-yellow-c (0.004 0) and Aa-yellow-x (0.007 4) were hardly expressed in the midgut. Conclusion: The 12 yellow genes identified in the Ae. aegypti genome have low homology, and are differentially expressed at different developmental stages and in tissues.


Asunto(s)
Aedes , Filogenia , Secuencia de Aminoácidos , Animales , Biología Computacional , Drosophila melanogaster , Femenino , Proteínas de Insectos/genética , Masculino , Alineación de Secuencia
2.
Research (Wash D C) ; 7: 0423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091634

RESUMEN

Thrombosis and infection are 2 major complications associated with central venous catheters (CVCs), resulting in substantial mortality and morbidity. The concurrent long-term administration of antibiotics and anticoagulants to address these complications have been demonstrated to cause severe side effects such as antibiotic resistance and bleeding. To mitigate these complications with minimal or no drug utilization, we developed a bioinspired zwitterionic block polymer-armored nitric oxide (NO)-generating functional coating for surface modification of CVCs. This armor was fabricated by precoating with a Cu-dopamine (DA)/selenocysteamine (SeCA) (Cu-DA/SeCA) network film capable of catalytically generating NO on the CVCs surface, followed by grafting of a zwitterionic p(DMA-b-MPC-b-DMA) polymer brush. The synergistic effects of active attack by NO and copper ions provided by Cu-DA/SeCA network and passive defense by zwitterionic polymer brush imparted the CVCs surface with durable antimicrobial properties and marked inhibition of platelets and fibrinogen. The in vivo studies confirmed that the surface-armored CVCs could effectively reduce inflammation and inhibit thrombosis, indicating a promising potential for clinical applications.

3.
Adv Sci (Weinh) ; 11(17): e2310259, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38424734

RESUMEN

Universal protein coatings have recently gained wide interest in medical applications due to their biocompatibility and ease of fabrication. However, the challenge persists in protein activity preservation, significantly complicating the functional design of these coatings. Herein, an active dual-protein surface engineering strategy assisted by a facile stepwise protein-protein interactions assembly (SPPIA) method for catheters to reduce clot formation and infection is proposed. This strategy is realized first by the partial oxidation of bovine serum albumin (BSA) and lysozyme (LZM) for creating stable nucleation platforms via hydrophobic interaction, followed by the assembly of nonoxidized BSA (pI, the isoelectric point, ≈4.7) and LZM (pI ≈11) through electrostatic interaction owing to their opposite charge under neutral conditions. The SPPIA method effectively preserves the conformation and functionality of both BSA and LZM, thus endowing the resultant coating with potent antithrombotic and bactericidal properties. Furthermore, the stable nucleation platform ensures the adhesion and durability of the coating, resisting thrombosis and bacterial proliferation even after 15 days of PBS immersion. Overall, the SPPIA approach not only provides a new strategy for the fabrication of active protein coatings but also shows promise for the surface engineering technology of catheters.


Asunto(s)
Materiales Biocompatibles Revestidos , Muramidasa , Albúmina Sérica Bovina , Trombosis , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Trombosis/metabolismo , Trombosis/prevención & control , Animales , Materiales Biocompatibles Revestidos/química , Muramidasa/química , Propiedades de Superficie , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
4.
Bioact Mater ; 32: 37-51, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37810990

RESUMEN

Proteins, cells and bacteria adhering to the surface of medical devices can lead to thrombosis and infection, resulting in significant clinical mortality. Here, we report a zwitterionic polymers-armored amyloid-like protein surface engineering strategy we called as "armored-tank" strategy for dual functionalization of medical devices. The "armored-tank" strategy is realized by decoration of partially conformational transformed LZM (PCTL) assembly through oxidant-mediated process, followed by armoring with super-hydrophilic poly-2-methacryloyloxyethyl phosphorylcholine (pMPC). The outer armor of the "armored-tank" shows potent and durable zone defense against fibrinogen, platelet and bacteria adhesion, leading to long-term antithrombogenic properties over 14 days in vivo without anticoagulation. Additionally, the "fired" PCTL from "armored-tank" actively and effectively kills both Gram-positive and Gram-negative bacterial over 30 days as a supplement to the lacking bactericidal functions of passive outer armor. Overall, this "armored-tank" surface engineering strategy serves as a promising solution for preventing biofouling and thrombotic occlusion of medical devices.

5.
Innovation (Camb) ; 5(5): 100671, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39114479

RESUMEN

Universal coatings with versatile surface adhesion, good mechanochemical robustness, and the capacity for secondary modification are of great scientific interest. However, incorporating these advantages into a system is still a great challenge. Here, we report a series of catechol-decorated polyallylamines (CPAs), denoted as pseudo-Mytilus edulis foot protein 5 (pseudo-Mefp-5), that mimic not only the catechol and amine groups but also the backbone of Mefp-5. CPAs can fabricate highly adhesive, robust, multifunctional polyCPA (PCPA) coatings based on synergetic catechol-polyamine chemistry as universal building blocks. Due to the interpenetrating entangled network architectures, these coatings exhibit high chemical robustness against harsh conditions (HCl, pH 1; NaOH, pH 14; H2O2, 30%), good mechanical robustness, and wear resistance. In addition, PCPA coatings provide abundant grafting sites, enabling the fabrication of various functional surfaces through secondary modification. Furthermore, the versatility, multifaceted robustness, and scalability of PCPA coatings indicate their great potential for surface engineering, especially for withstanding harsh conditions in multipurpose biomedical applications.

6.
Bioact Mater ; 33: 562-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38162514

RESUMEN

Thrombus formation and tissue embedding significantly impair the clinical efficacy and retrievability of temporary interventional medical devices. Herein, we report an insect sclerotization-inspired antifouling armor for tailoring temporary interventional devices with durable resistance to protein adsorption and the following protein-mediated complications. By mimicking the phenol-polyamine chemistry assisted by phenol oxidases during sclerotization, we develop a facile one-step method to crosslink bovine serum albumin (BSA) with oxidized hydrocaffeic acid (HCA), resulting in a stable and universal BSA@HCA armor. Furthermore, the surface of the BSA@HCA armor, enriched with carboxyl groups, supports the secondary grafting of polyethylene glycol (PEG), further enhancing both its antifouling performance and durability. The synergy of robustly immobilized BSA and covalently grafted PEG provide potent resistance to the adhesion of proteins, platelets, and vascular cells in vitro. In ex vivo blood circulation experiment, the armored surface reduces thrombus formation by 95 %. Moreover, the antifouling armor retained over 60 % of its fouling resistance after 28 days of immersion in PBS. Overall, our armor engineering strategy presents a promising solution for enhancing the antifouling properties and clinical performance of temporary interventional medical devices.

7.
Biomaterials ; 304: 122427, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100906

RESUMEN

Protein and cell adhesion on temporary intravascular devices can lead to thrombosis and tissue embedment, significantly increasing complications and device retrieval difficulties. Here, we propose an endothelial glycocalyx-inspired dynamic antifouling surface strategy for indwelling catheters and retrievable vascular filters to prevent thrombosis and suppress intimal embedment. This strategy is realized on the surfaces of substrates by the intensely dense grafting of hydrolyzable endothelial polysaccharide hyaluronic acid (HA), assisted by an amine-rich phenol-polyamine universal platform. The resultant super-hydrophilic surface exhibits potent antifouling property against proteins and cells. Additionally, the HA hydrolysis induces continuous degradation of the coating, enabling removal of inevitable biofouling on the surface. Moreover, the dense grafting of HA also ensures the medium-term effectiveness of this dynamic antifouling surface. The coated catheters maintain a superior anti-thrombosis capacity in ex vivo blood circulation after 30 days immersion. In the abdominal veins of rats, the coated implants show inhibitory effects on intimal embedment up to 2 months. Overall, we envision that this glycocalyx-inspired dynamic antifouling surface strategy could be a promising surface engineering technology for temporary intravascular devices.


Asunto(s)
Incrustaciones Biológicas , Trombosis , Ratas , Animales , Incrustaciones Biológicas/prevención & control , Proteínas , Ácido Hialurónico/química , Interacciones Hidrofóbicas e Hidrofílicas , Trombosis/prevención & control , Propiedades de Superficie
8.
Acta Biomater ; 179: 371-384, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382829

RESUMEN

Endovascular stenting is a safer alternative to open surgery for use in treating cerebral arterial stenosis and significantly reduces the recurrence of ischemic stroke, but the widely used bare-metal stents (BMSs) often result in in-stent restenosis (ISR). Although evidence suggests that drug-eluting stents are superior to BMSs in the short term, their long-term performances remain unknown. Herein, we propose a potential vascular stent modified by immobilizing clickable chemerin 15 (C15) peptides on the stent surface to suppress coagulation and restenosis. Various characterization techniques and an animal model were used to evaluate the surface properties of the modified stents and their effects on endothelial injury, platelet adhesion, and inflammation. The C15-immobilized stent could prevent restenosis by minimizing endothelial injury, promoting physiological healing, restraining the platelet-leukocyte-related inflammatory response, and inhibiting vascular smooth muscle cell proliferation and migration. Furthermore, in vivo studies demonstrated that the C15-immobilized stent mitigated inflammation, suppressed neointimal hyperplasia, and accelerated endothelial restoration. The use of surface-modified, anti-inflammatory, endothelium-friendly stents may be of benefit to patients with arterial stenosis. STATEMENT OF SIGNIFICANCE: Endovascular stenting is increasingly used for cerebral arterial stenosis treatment, aiming to prevent and treat ischemic stroke. But an important accompanying complication is in-stent restenosis (ISR). Persistent inflammation has been established as a hallmark of ISR and anti-inflammation strategies in stent modification proved effective. Chemerin 15, an inflammatory resolution mediator with 15-aa peptide, was active at picomolar through cell surface receptor, no need to permeate cell membrane and involved in resolution of inflammation by inhibiting inflammatory cells adhesion, modulating macrophage polarization into protective phenotype, and reducing inflammatory factors release. The implications of this study are that C15 immobilized stent favors inflammation resolution and rapid re-endothelialization, and exhibits an inhibitory role of restenosis. As such, it helps the decreased incidence of ISR.


Asunto(s)
Quimiocinas , Hiperplasia , Neointima , Stents , Animales , Quimiocinas/metabolismo , Humanos , Neointima/patología , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos/farmacología , Péptidos/química , Ratones , Proliferación Celular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Proteínas Inmovilizadas/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos
9.
Biomaterials ; 302: 122311, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37677916

RESUMEN

Stenting is the primary treatment for vascular obstruction-related cardiovascular diseases, but it inevitably causes endothelial injury which may lead to severe thrombosis and restenosis. Maintaining nitric oxide (NO, a vasoactive mediator) production and grafting endothelial glycocalyx such as heparin (Hep) onto the surface of cardiovascular stents could effectively reconstruct the damaged endothelium. However, insufficient endogenous NO donors may impede NO catalytic generation and fail to sustain cardiovascular homeostasis. Here, a dopamine-copper (DA-Cu) network-based coating armed with NO precursor L-arginine (Arg) and Hep (DA-Cu-Arg-Hep) is prepared using an organic solvent-free dipping technique to form a nanometer-thin coating onto the cardiovascular stents. The DA-Cu network adheres tightly to the surface of stents and confers excellent NO catalytic activity in the presence of endogenous NO donors. The immobilized Arg functions as a NO fuel to generate NO via endothelial nitric oxide synthase (eNOS), while Hep works as eNOS booster to increase the level of eNOS to decompose Arg into NO, ensuring a sufficient supply of NO even when endogenous donors are insufficient. The synergistic interaction between Cu and Arg is analogous to a gas station to fuel NO production to compensate for the insufficient endogenous NO donor in vivo. Consequently, it promotes the reconstruction of natural endothelium, inhibits smooth muscle cell (SMC) migration, and suppresses cascading platelet adhesion, preventing stent thrombosis and restenosis. We anticipate that our DA-Cu-Arg-Hep coating will improve the quality of life of cardiovascular patients through improved surgical follow-up, increased safety, and decreased medication, as well as revitalize the stenting industry through durable designs.


Asunto(s)
Óxido Nítrico , Trombosis , Humanos , Óxido Nítrico/metabolismo , Cobre , Calidad de Vida , Stents/efectos adversos , Endotelio , Trombosis/prevención & control , Trombosis/etiología
10.
Research (Wash D C) ; 2022: 9780879, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35515702

RESUMEN

Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices, leading to significant mortality in clinic. To address this issue, here, we report a biomimetic surface engineering strategy by the integration of mussel-inspired adhesive peptide, with bio-orthogonal click chemistry, to tailor the surface functionalities of tubing and catheters. Inspired by mussel adhesive foot protein, a bioclickable peptide mimic (DOPA)4-azide-based structure is designed and grafted on an aminated tubing robustly based on catechol-amine chemistry. Then, the dibenzylcyclooctyne (DBCO) modified nitric oxide generating species of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelated copper ions and the DBCO-modified antimicrobial peptide (DBCO-AMP) are clicked onto the grafted surfaces via bio-orthogonal reaction. The combination of the robustly grafted AMP and Cu-DOTA endows the modified tubing with durable antimicrobial properties and ability in long-term catalytically generating NO from endogenous s-nitrosothiols to resist adhesion/activation of platelets, thus preventing the formation of thrombosis. Overall, this biomimetic surface engineering technology provides a promising solution for multicomponent surface functionalization and the surface bioengineering of biomedical devices with enhanced clinical performance.

11.
ACS Biomater Sci Eng ; 5(9): 4331-4340, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-33417789

RESUMEN

Hydrophobic coating is of great interest to enhance the corrosion resistance of magnesium alloy implants, which always suffer from rapid corrosion that leads to the failing application under physiological conditions. Plasma-polymerized fluorocarbon (C-F) coating has been widely studied as a substrate protection layer; however, the precise control of the deposition rate of C-F coating with fluorinated alkanes has been a challenge. In this study, a thin, uniform, pinhole-free, polymerlike, and hydrophobic C-F coating was successfully prepared using acetylene (C2H2) as a cross-linking agent, which endows the coating with tunable properties of deposition rate by incorporation of unsaturated bonds. Electrochemical corrosion and in vitro immersion test demonstrated that the C-F coating significantly slows down the corrosion rate of MgZnMn in phosphate-buffered saline solution at 37 °C. Furthermore, an additional layer of PPAam was deposited on the C-F coating to eliminate the adverse effect of C-F surface on cytocompatibility. Thus, such a stacked coating imparts MgZnMn with a significantly improved corrosion resistance and promotes cell adhesion and viability. Therefore, the strategy of acetylene-mediated C-F-based coating shows a great potential for tailoring ideal surface functionalities of magnesium-based medical devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA