Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 64(5): 100370, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059333

RESUMEN

Conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA) by autotaxin, a secreted phospholipase D, is a major pathway for producing LPA. We previously reported that feeding Ldlr-/- mice standard mouse chow supplemented with unsaturated LPA or lysophosphatidylcholine qualitatively mimicked the dyslipidemia and atherosclerosis induced by feeding a Western diet (WD). Here, we report that adding unsaturated LPA to standard mouse chow also increased the content of reactive oxygen species and oxidized phospholipids (OxPLs) in jejunum mucus. To determine the role of intestinal autotaxin, enterocyte-specific Ldlr-/-/Enpp2 KO (intestinal KO) mice were generated. In control mice, the WD increased enterocyte Enpp2 expression and raised autotaxin levels. Ex vivo, addition of OxPL to jejunum from Ldlr-/- mice on a chow diet induced expression of Enpp2. In control mice, the WD raised OxPL levels in jejunum mucus and decreased gene expression in enterocytes for a number of peptides and proteins that affect antimicrobial activity. On the WD, the control mice developed elevated levels of lipopolysaccharide in jejunum mucus and plasma, with increased dyslipidemia and increased atherosclerosis. All these changes were reduced in the intestinal KO mice. We conclude that the WD increases the formation of intestinal OxPL, which i) induce enterocyte Enpp2 and autotaxin resulting in higher enterocyte LPA levels; that ii) contribute to the formation of reactive oxygen species that help to maintain the high OxPL levels; iii) decrease intestinal antimicrobial activity; and iv) raise plasma lipopolysaccharide levels that promote systemic inflammation and enhance atherosclerosis.


Asunto(s)
Antiinfecciosos , Aterosclerosis , Dislipidemias , Ratones , Animales , Lisofosfatidilcolinas , Enterocitos/metabolismo , Lipopolisacáridos , Especies Reactivas de Oxígeno , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Dieta Occidental , Inflamación/genética , Dislipidemias/metabolismo , Aterosclerosis/genética
2.
J Lipid Res ; 63(1): 100153, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808192

RESUMEN

We previously reported that adding a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F) to a Western diet (WD) ameliorated systemic inflammation. To determine the mechanism(s) responsible for these observations, Ldlr-/- mice were fed chow, a WD, or WD plus Tg6F. We found that a WD altered the taxonomic composition of bacteria in jejunum mucus. For example, Akkermansia muciniphila virtually disappeared, while overall bacteria numbers and lipopolysaccharide (LPS) levels increased. In addition, gut permeability increased, as did the content of reactive oxygen species and oxidized phospholipids in jejunum mucus in WD-fed mice. Moreover, gene expression in the jejunum decreased for multiple peptides and proteins that are secreted into the mucous layer of the jejunum that act to limit bacteria numbers and their interaction with enterocytes including regenerating islet-derived proteins, defensins, mucin 2, surfactant A, and apoA-I. Following WD, gene expression also decreased for Il36γ, Il23, and Il22, cytokines critical for antimicrobial activity. WD decreased expression of both Atoh1 and Gfi1, genes required for the formation of goblet and Paneth cells, and immunohistochemistry revealed decreased numbers of goblet and Paneth cells. Adding Tg6F ameliorated these WD-mediated changes. Adding oxidized phospholipids ex vivo to the jejunum from mice fed a chow diet reproduced the changes in gene expression in vivo that occurred when the mice were fed WD and were prevented with addition of 6F peptide. We conclude that Tg6F ameliorates the WD-mediated increase in oxidized phospholipids that cause changes in jejunum mucus, which induce dysbiosis and systemic inflammation.


Asunto(s)
Disbiosis
3.
Water Sci Technol ; 84(10-11): 2997-3017, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34850709

RESUMEN

An attempt has been made to assess the water quality status of the lower stretch of river Ganga flowing through West Bengal for drinking using integrated techniques. For this study, 11 parameters at 10 locations from Beharampur to Diamond Harbour over nine years (2011-2019) were considered. The eastern stretch of Ganga showed a variation of Water Quality Index (WQI) from 55 to 416 and Synthetic Pollution Index (SPI) from 0.59 to 3.68 in nine years. The result was endorsed through a fair correlation between WQI and SPI (r2 > 0.95). The map interpolated through GIS revealed that the entire river stretch in the year 2011, 2012, and 2019 and location near to ocean during the entire period of nine years were severely polluted (WQI > 100 or SPI > 1). Turbidity and boron concentration mainly contribute to the high scores of indices. Further, the origin of these ions was estimated through multivariate statistical techniques. It was affirmed that the origin of boron is mainly attributed to seawater influx, that of fluoride to anthropogenic sources, and other parameters originated through geogenic as well as human activities. Based on the research, a few possible water treatment mechanisms are suggested to render the water fit for drinking.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Fluoruros , Sistemas de Información Geográfica , Humanos , India , Ríos , Contaminantes Químicos del Agua/análisis , Calidad del Agua
4.
Curr Opin Lipidol ; 30(5): 383-387, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31356236

RESUMEN

PURPOSE OF REVIEW: To discuss recent findings on the importance of the small intestine in modulating metabolism and inflammation in atherosclerosis and cancer. RECENT FINDINGS: Integrin ß7 natural gut intraepithelial T cells modulated metabolism and accelerated atherosclerosis in mice. Reducing the generation of lysophospholipids in the small intestine mimicked bariatric surgery and improved diabetes. Enterocyte-specific knockdown of stearoyl-CoA desaturase-1 significantly improved dyslipidemia in LDL receptor null (Ldlr) mice fed a Western diet. Adding a concentrate of tomatoes transgenic for the apolipoprotein A-I mimetic peptide 6F to the chow of wild-type mice altered lipid metabolism in the small intestine, preserved Notch signaling and reduced tumor burden in mouse models. The phospholipid-remodeling enzyme Lpcat3 regulated intestinal stem cells and progenitor cells by stimulating cholesterol biosynthesis; increasing cholesterol in the diet or through genetic manipulation promoted tumorigenesis in Apc mice. SUMMARY: The small intestine is important for regulating metabolism and inflammation in animal models of both atherosclerosis and cancer.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/genética , Aterosclerosis/genética , Neoplasias/genética , Receptores de LDL/genética , Estearoil-CoA Desaturasa/genética , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Modelos Animales de Enfermedad , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Cadenas beta de Integrinas/genética , Intestino Delgado/metabolismo , Ratones , Neoplasias/metabolismo , Neoplasias/patología
5.
J Lipid Res ; 59(10): 1818-1840, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30139760

RESUMEN

After crossing floxed stearoyl-CoA desaturase-1 (Scd1fl/fl) mice with LDL receptor-null (ldlr-/-) mice, and then Villin Cre (VilCre) mice, enterocyte Scd1 expression in Scd1fl/fl/ldlr-/-/VilCre mice was reduced 70%. On Western diet (WD), Scd1fl/fl/ldlr-/- mice gained more weight than Scd1fl/fl/ldlr-/-/VilCre mice (P < 0.0023). On WD, jejunum levels of lysophosphatidylcholine (LysoPC) 18:1 and lysophosphatidic acid (LPA) 18:1 were significantly less in Scd1fl/fl/ldlr-/-/VilCre compared with Scd1fl/fl/ldlr-/- mice (P < 0.0004 and P < 0.026, respectively). On WD, Scd1fl/fl/ldlr-/-/VilCre mice compared with Scd1fl/fl/ldlr-/- mice had lower protein levels of lipopolysaccharide-binding protein (LBP), cluster of differentiation 14 (CD14), toll-like receptor 4 (TLR4), and myeloid differentiation factor-88 (MyD88) in enterocytes and plasma, and less dyslipidemia and systemic inflammation. Adding a concentrate of tomatoes transgenic for the apoA-I mimetic peptide 6F (Tg6F) to WD resulted in reduced enterocyte protein levels of LBP, CD14, TLR4, and MyD88 in Scd1fl/fl/ldlr-/- mice similar to that seen in Scd1fl/fl/ldlr-/-/VilCre mice. Adding LysoPC 18:1 to WD did not reverse the effects of enterocyte Scd1 knockdown. Adding LysoPC 18:1 (but not LysoPC 18:0) to chow induced jejunum Scd1 expression and increased dyslipidemia and plasma serum amyloid A and interleukin 6 levels in Scd1fl/fl/ldlr-/- mice, but not in Scd1fl/fl/ldlr-/-/VilCre mice. We conclude that enterocyte Scd1 is partially responsible for LysoPC 18:1- and WD-induced dyslipidemia and inflammation in ldlr-/- mice.


Asunto(s)
Enterocitos/enzimología , Eliminación de Gen , Receptores de LDL/deficiencia , Receptores de LDL/genética , Estearoil-CoA Desaturasa/metabolismo , Proteínas de Fase Aguda/metabolismo , Animales , Peso Corporal , Proteínas Portadoras/metabolismo , HDL-Colesterol/sangre , Dislipidemias/enzimología , Dislipidemias/genética , Dislipidemias/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Yeyuno/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Lisofosfatidilcolinas/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/metabolismo , Estearoil-CoA Desaturasa/deficiencia , Estearoil-CoA Desaturasa/genética , Receptor Toll-Like 4/metabolismo
6.
J Lipid Res ; 58(8): 1636-1647, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28592401

RESUMEN

Feeding LDL receptor (LDLR)-null mice a Western diet (WD) increased the expression of IFN-ß in jejunum as determined by quantitative RT-PCR (RT-qPCR), immunohistochemistry (IHC), and ELISA (all P < 0.0001). WD also increased the expression of cholesterol 25-hydroxylase (CH25H) as measured by RT-qPCR (P < 0.0001), IHC (P = 0.0019), and ELISA (P < 0.0001), resulting in increased levels of 25-hydroxycholesterol (25-OHC) in jejunum as determined by LC-MS/MS (P < 0.0001). Adding ezetimibe at 10 mg/kg/day or adding a concentrate of transgenic tomatoes expressing the 6F peptide (Tg6F) at 0.06% by weight of diet substantially ameliorated these changes. Adding either ezetimibe or Tg6F to WD also ameliorated WD-induced changes in plasma lipids, serum amyloid A, and HDL cholesterol. Adding the same doses of ezetimibe and Tg6F together to WD (combined formulation) was generally more efficacious compared with adding either agent alone. Surprisingly, adding ezetimibe during the preparation of Tg6F, but before addition to WD, was more effective than the combined formulation for all parameters measured in jejunum (P = 0.0329 to P < 0.0001). We conclude the following: i) WD induces IFN-ß, CH25H, and 25-OHC in jejunum; and ii) Tg6F and ezetimibe partially ameliorate WD-induced inflammation by preventing WD-induced increases in IFN-ß, CH25H, and 25-OHC.


Asunto(s)
Dieta Occidental/efectos adversos , Ezetimiba/farmacología , Interferón beta/metabolismo , Yeyuno/metabolismo , Péptidos/genética , Solanum lycopersicum/genética , Esteroide Hidroxilasas/metabolismo , Animales , Duodeno/efectos de los fármacos , Duodeno/metabolismo , Dislipidemias/tratamiento farmacológico , Dislipidemias/genética , Ezetimiba/uso terapéutico , Expresión Génica , Interferón-alfa/genética , Interferón-alfa/metabolismo , Interferón beta/genética , Yeyuno/efectos de los fármacos , Ratones , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esteroide Hidroxilasas/genética
7.
J Lipid Res ; 57(5): 832-47, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26965826

RESUMEN

Mouse chow supplemented with lysophosphatidylcholine with oleic acid at sn-1 and a hydroxyl group at sn-2 (LysoPC 18:1) increased LysoPC 18:1 in tissue of the jejunum of LDL receptor (LDLR)-null mice by 8.9 ± 1.7-fold compared with chow alone. Western diet (WD) contained dramatically less phosphatidylcholine 18:1 or LysoPC 18:1 compared with chow, but feeding WD increased LysoPC 18:1 in the jejunum by 7.5 ± 1.4-fold compared with chow. Feeding LysoPC 18:1 or feeding WD increased oxidized phospholipids in the jejunum by 5.2 ± 3.0-fold or 8.6 ± 2.2-fold, respectively, in LDLR-null mice (P < 0.0004), and 2.6 ± 1.5-fold or 2.4 ± 0.92-fold, respectively, in WT C57BL/6J mice (P < 0.0001). Adding 0.06% by weight of a concentrate of transgenic tomatoes expressing the 6F peptide (Tg6F) decreased LysoPC 18:1 in the jejunum of LDLR-null mice on both diets (P < 0.0001), and prevented the increase in oxidized phospholipids in the jejunum in LDLR-null and WT mice on both diets (P < 0.008). Tg6F decreased inflammatory cells in the villi of the jejunum, decreased dyslipidemia, and decreased systemic inflammation in LDLR-null and WT mice on both diets. We conclude that Tg6F reduces diet-induced inflammation by reducing the content of unsaturated LysoPC and oxidized phospholipids in the jejunum of mice.


Asunto(s)
Dieta Occidental/efectos adversos , Yeyuno/metabolismo , Lisofosfatidilcolinas/efectos adversos , Péptidos/administración & dosificación , Fosfolípidos/metabolismo , Administración Oral , Animales , Dislipidemias/sangre , Dislipidemias/tratamiento farmacológico , Dislipidemias/etiología , Enterocitos/metabolismo , Femenino , Yeyuno/efectos de los fármacos , Solanum lycopersicum/química , Solanum lycopersicum/genética , Lisofosfatidilcolinas/sangre , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Receptores de LDL/genética
8.
Plant Physiol ; 167(3): 628-38, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25624397

RESUMEN

Despite variable and often scarce supplies of inorganic phosphate (Pi) from soils, plants must distribute appropriate amounts of Pi to each cell and subcellular compartment to sustain essential metabolic activities. The ability to monitor Pi dynamics with subcellular resolution in live plants is, therefore, critical for understanding how this essential nutrient is acquired, mobilized, recycled, and stored. Fluorescence indicator protein for inorganic phosphate (FLIPPi) sensors are genetically encoded fluorescence resonance energy transfer-based sensors that have been used to monitor Pi dynamics in cultured animal cells. Here, we present a series of Pi sensors optimized for use in plants. Substitution of the enhanced yellow fluorescent protein component of a FLIPPi sensor with a circularly permuted version of Venus enhanced sensor dynamic range nearly 2.5-fold. The resulting circularly permuted FLIPPi sensor was subjected to a high-efficiency mutagenesis strategy that relied on statistical coupling analysis to identify regions of the protein likely to influence Pi affinity. A series of affinity mutants was selected with dissociation constant values of 0.08 to 11 mm, which span the range for most plant cell compartments. The sensors were expressed in Arabidopsis (Arabidopsis thaliana), and ratiometric imaging was used to monitor cytosolic Pi dynamics in root cells in response to Pi deprivation and resupply. Moreover, plastid-targeted versions of the sensors expressed in the wild type and a mutant lacking the PHOSPHATE TRANSPORT4;2 plastidic Pi transporter confirmed a physiological role for this transporter in Pi export from root plastids. These circularly permuted FLIPPi sensors, therefore, enable detailed analysis of Pi dynamics with subcellular resolution in live plants.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Imagenología Tridimensional , Fosfatos/metabolismo , Transporte Biológico , Citosol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/metabolismo , Mutación/genética , Fosfatos/farmacología , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Plastidios/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
9.
ACS Infect Dis ; 7(12): 3292-3302, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34761906

RESUMEN

3-Deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthase catalyzes the first step in the shikimate biosynthetic pathway and is an antimicrobial target. We used an inhibitor-in-pieces approach, based on the previously reported inhibitor DAHP oxime, to screen inhibitor fragments in the presence and absence of glycerol 3-phosphate to occupy the distal end of the active site. This led to DAHP hydrazone, the most potent inhibitor to date, Ki = 10 ± 1 nM. Three trifluoropyruvate (TFP)-based inhibitor fragments were efficient inhibitors with ligand efficiencies of up to 0.7 kcal mol-1/atom compared with 0.2 kcal mol-1/atom for a typical good inhibitor. The crystal structures showed the TFP-based inhibitors binding upside down in the active site relative to DAHP oxime, providing new avenues for inhibitor development. The ethyl esters of TFP oxime and TFP semicarbazone prevented E. coli growth in culture with IC50 = 0.21 ± 0.01 and 0.77 ± 0.08 mg mL-1, respectively. Overexpressing DAHP synthase relieved growth inhibition, demonstrating that DAHP synthase was the target. Growth inhibition occurred in media containing aromatic amino acids, suggesting that growth inhibition was due to depletion of some other product(s) of the shikimate pathway, possibly folate.


Asunto(s)
3-Desoxi-7-Fosfoheptulonato Sintasa , Escherichia coli , 3-Desoxi-7-Fosfoheptulonato Sintasa/metabolismo , Dominio Catalítico , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Fosfatos
10.
Sci Rep ; 8(1): 9032, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899427

RESUMEN

Having demonstrated that apolipoprotein A-I (apoA-I) mimetic peptides ameliorate cancer in mouse models, we sought to determine the mechanism for the anti-tumorigenic function of these peptides. CT-26 cells (colon cancer cells that implant and grow into tumors in the lungs) were injected into wild-type BALB/c mice. The day after injection, mice were either continued on chow or switched to chow containing 0.06% of a concentrate of transgenic tomatoes expressing the apoA-I mimetic peptide 6F (Tg6F). After four weeks, the number of lung tumors was significantly lower in Tg6F-fed mice. Gene expression array analyses of jejunum and lung identified Notch pathway genes significantly upregulated, whereas osteopontin (Spp1) was significantly downregulated by Tg6F in both jejunum and lung. In jejunum, Tg6F increased protein levels for Notch1, Notch2, Dll1, and Dll4. In lung, Tg6F increased protein levels for Notch1 and Dll4 and decreased Spp1. Tg6F reduced oxidized phospholipid levels (E06 immunoreactivity) and reduced 25-hydroxycholesterol (25-OHC) levels, which are known to inhibit Notch1 and induce Spp1, respectively. Notch pathway promotes anti-tumorigenic patrolling monocytes, while Spp1 facilitates pro-tumorigenic myeloid derived suppressor cells (MDSCs) formation. Tg6F-fed mice had higher numbers of patrolling monocytes in jejunum and in lung (p < 0.02), and lower plasma levels of Spp1 with reduced numbers of MDSCs in jejunum and in lung (p < 0.03). We conclude that Tg6F alters levels of specific oxidized lipids and 25-OHC to modulate Notch pathways and Spp1, which alter small intestine immune cells, leading to similar changes in lung that reduce tumor burden.


Asunto(s)
Apolipoproteína A-I/metabolismo , Neoplasias Pulmonares/prevención & control , Neoplasias Experimentales/tratamiento farmacológico , Péptidos/farmacología , Carga Tumoral/efectos de los fármacos , Animales , Apolipoproteína A-I/química , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias Experimentales/patología , Receptores Notch/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Carga Tumoral/genética
11.
Pharmacol Res Perspect ; 3(4): e00154, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26171234

RESUMEN

We previously reported that adding freeze-dried tomato powder from transgenic plants expressing the apolipoprotein A-I mimetic peptide 6F at 2.2% by weight to a Western diet (WD) ameliorated dyslipidemia and atherosclerosis in mice. The same dose in a human would require three cups of tomato powder three times daily. To reduce the volume, we sought a method to concentrate 6F. Remarkably, extracting the transgenic freeze-dried tomato overnight in ethyl acetate with 5% acetic acid resulted in a 37-fold reduction in the amount of transgenic tomato needed for biologic activity. In a mouse model of dyslipidemia, adding 0.06% by weight of the tomato concentrate expressing the 6F peptide (Tg6F) to a WD significantly reduced plasma total cholesterol and triglycerides (P < 0.0065). In a mouse model of colon cancer metastatic to the lungs, adding 0.06% of Tg6F, but not a control tomato concentrate (EV), to standard mouse chow reduced tumor-associated neutrophils by 94 ± 1.1% (P = 0.0052), and reduced tumor burden by two-thirds (P = 0.0371). Adding 0.06% of either EV or Tg6F by weight to standard mouse chow significantly reduced tumor burden in a mouse model of ovarian cancer; however, Tg6F was significantly more effective (35% reduction for EV vs. 53% reduction for Tg6F; P = 0.0069). Providing the same dose of tomato concentrate to humans would require only two tablespoons three times daily making this a practical approach for testing oral apoA-I mimetic therapy in the treatment of dyslipidemia and cancer.

12.
Genome Announc ; 1(1)2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23469361

RESUMEN

The draft genome sequence of a nitrate- and phosphate-removing, Gram-positive Bacillus sp. with optimum growth at 37°C and pH 7 in nitrate broth (HiMedia M439) isolated from rhizosphere of a water lily, with a genome size of 5,465,157 bp and a G+C content of 35.0%, is reported here.

13.
Genome Announc ; 1(1)2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23469363

RESUMEN

The draft genome sequence (5,868,741 bp) of a nitrate- and phosphate-removing Bacillus sp., WBUNB009, isolated from a raw sewage canal in nitrate broth (Himedia M439) with a G+C content of 34.9% is reported. It removes 60.23% nitrate and 96% phosphate within 16 h at 37°C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA