Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 26(18): 185704, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25872562

RESUMEN

The effect of the oxide barrier thickness (tSiO2) reduction and the Si excess ([Si]exc) increase on the electrical and electroluminescence (EL) properties of Si-rich oxynitride (SRON)/SiO2 superlattices (SLs) is investigated. The active layers of the metal-oxide-semiconductor devices were fabricated by alternated deposition of SRON and SiO2 layers on top of a Si substrate. The precipitation of the Si excess and thus formation of Si nanocrystals (NCs) within the SRON layers was achieved after an annealing treatment at 1150 °C. A structural characterization revealed a high crystalline quality of the SLs for all devices, and the evaluated NC crystalline size is in agreement with a good deposition and annealing control. We found a dramatic conductivity enhancement when the Si content is increased or the SiO2 barrier thickness is decreased, due to a larger interaction of the carrier wavefunctions from adjacent layers. EL recombination dynamics were studied, revealing radiative recombination decay times of the order of tens of microseconds. Lower lifetimes were found at higher [Si]exc, attributed to exciton confinement delocalization, whereas intermediate barrier thicknesses present the slowest decay. The electrical-to-light conversion efficiency increases monotonously at thicker barriers and smaller Si contents. We ascribe these effects mainly to free carriers, which enhance carrier transport through the SLs while strongly quenching light emission. Finally, the combination of the different results led us to conclude that tSiO2 âˆ¼ 2 nm and [Si]exc from 12 to 15 at% are the ideal structure parameters for a balanced electro-optical response of Si NC-based SLs.

2.
Sci Rep ; 8(1): 5924, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29651116

RESUMEN

The shape of the electric-field-current-density (E-J) curve is determined by flux pinning and also by dynamics of vortices. Here, we propose a novel methodology to study the normalized flux creep rate S in YBa2Cu3O7-δ measured from E-J curves obtained by electrical transport measurements that provides a fast and versatile way to foresee the flux magnetic relaxation in films and disentangle angular flux creep contributions by the scaling of the isotropic contribution of S. After a detailed comparison of various pristine and nanocomposite films with differentiated nanostructures, we focus on the roles that intrinsic pinning and stacking faults (YBa2Cu4O8-intergrowths) play when the magnetic field is applied parallel to the superconducting CuO2 planes. This study reveals that the emerging intergrowths provide advanced pinning properties that additionally reduce the thermal activated flux magnetic relaxation. For this purpose, creep analysis becomes a very appropriate tool to elucidate the dominance of the different pinning sites at different regions of the magnetic-field-temperature diagram.

3.
Sci Rep ; 8(1): 7064, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717188

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA