Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2211132120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623200

RESUMEN

SARS-CoV-2 vaccines are effective at limiting disease severity, but effectiveness is lower among patients with cancer or immunosuppression. Effectiveness wanes with time and varies by vaccine type. Moreover, previously prescribed vaccines were based on the ancestral SARS-CoV-2 spike-protein that emerging variants may evade. Here, we describe a mechanistic mathematical model for vaccination-induced immunity. We validate it with available clinical data and use it to simulate the effectiveness of vaccines against viral variants with lower antigenicity, increased virulence, or enhanced cell binding for various vaccine platforms. The analysis includes the omicron variant as well as hypothetical future variants with even greater immune evasion of vaccine-induced antibodies and addresses the potential benefits of the new bivalent vaccines. We further account for concurrent cancer or underlying immunosuppression. The model confirms enhanced immunogenicity following booster vaccination in immunosuppressed patients but predicts ongoing booster requirements for these individuals to maintain protection. We further studied the impact of variants on immunosuppressed individuals as a function of the interval between multiple booster doses. Our model suggests possible strategies for future vaccinations and suggests tailored strategies for high-risk groups.


Asunto(s)
COVID-19 , Neoplasias , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , COVID-19/prevención & control , Anticuerpos Antivirales , Anticuerpos Neutralizantes
2.
PLoS Comput Biol ; 19(6): e1011131, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289729

RESUMEN

Implementation of effective cancer treatment strategies requires consideration of how the spatiotemporal heterogeneities within the tumor microenvironment (TME) influence tumor progression and treatment response. Here, we developed a multi-scale three-dimensional mathematical model of the TME to simulate tumor growth and angiogenesis and then employed the model to evaluate an array of single and combination therapy approaches. Treatments included maximum tolerated dose or metronomic (i.e., frequent low doses) scheduling of anti-cancer drugs combined with anti-angiogenic therapy. The results show that metronomic therapy normalizes the tumor vasculature to improve drug delivery, modulates cancer metabolism, decreases interstitial fluid pressure and decreases cancer cell invasion. Further, we find that combining an anti-cancer drug with anti-angiogenic treatment enhances tumor killing and reduces drug accumulation in normal tissues. We also show that combined anti-angiogenic and anti-cancer drugs can decrease cancer invasiveness and normalize the cancer metabolic microenvironment leading to reduced hypoxia and hypoglycemia. Our model simulations suggest that vessel normalization combined with metronomic cytotoxic therapy has beneficial effects by enhancing tumor killing and limiting normal tissue toxicity.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Preparaciones Farmacéuticas , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias/patología , Antineoplásicos/farmacología , Inmunoterapia , Neovascularización Patológica/metabolismo , Microambiente Tumoral
3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33402434

RESUMEN

Understanding the underlying mechanisms of COVID-19 progression and the impact of various pharmaceutical interventions is crucial for the clinical management of the disease. We developed a comprehensive mathematical framework based on the known mechanisms of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, incorporating the renin-angiotensin system and ACE2, which the virus exploits for cellular entry, key elements of the innate and adaptive immune responses, the role of inflammatory cytokines, and the coagulation cascade for thrombus formation. The model predicts the evolution of viral load, immune cells, cytokines, thrombosis, and oxygen saturation based on patient baseline condition and the presence of comorbidities. Model predictions were validated with clinical data from healthy people and COVID-19 patients, and the results were used to gain insight into identified risk factors of disease progression including older age; comorbidities such as obesity, diabetes, and hypertension; and dysregulated immune response. We then simulated treatment with various drug classes to identify optimal therapeutic protocols. We found that the outcome of any treatment depends on the sustained response rate of activated CD8+ T cells and sufficient control of the innate immune response. Furthermore, the best treatment-or combination of treatments-depends on the preinfection health status of the patient. Our mathematical framework provides important insight into SARS-CoV-2 pathogenesis and could be used as the basis for personalized, optimal management of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/inmunología , COVID-19/virología , Simulación por Computador , Citocinas/genética , Citocinas/inmunología , Progresión de la Enfermedad , Humanos , Inmunidad Innata , Modelos Teóricos , Fenotipo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/fisiología
4.
Proc Natl Acad Sci U S A ; 117(7): 3728-3737, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015113

RESUMEN

Advances in immunotherapy have revolutionized the treatment of multiple cancers. Unfortunately, tumors usually have impaired blood perfusion, which limits the delivery of therapeutics and cytotoxic immune cells to tumors and also results in hypoxia-a hallmark of the abnormal tumor microenvironment (TME)-that causes immunosuppression. We proposed that normalization of TME using antiangiogenic drugs and/or mechanotherapeutics can overcome these challenges. Recently, immunotherapy with checkpoint blockers was shown to effectively induce vascular normalization in some types of cancer. Although these therapeutic approaches have been used in combination in preclinical and clinical studies, their combined effects on TME are not fully understood. To identify strategies for improved immunotherapy, we have developed a mathematical framework that incorporates complex interactions among various types of cancer cells, immune cells, stroma, angiogenic molecules, and the vasculature. Model predictions were compared with the data from five previously reported experimental studies. We found that low doses of antiangiogenic treatment improve immunotherapy when the two treatments are administered sequentially, but that high doses are less efficacious because of excessive vessel pruning and hypoxia. Stroma normalization can further increase the efficacy of immunotherapy, and the benefit is additive when combined with vascular normalization. We conclude that vessel functionality dictates the efficacy of immunotherapy, and thus increased tumor perfusion should be investigated as a predictive biomarker of response to immunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral , Inhibidores de la Angiogénesis/administración & dosificación , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Modelos Teóricos , Neoplasias/tratamiento farmacológico , Linfocitos T/inmunología , Microambiente Tumoral/efectos de los fármacos
5.
Gut ; 71(1): 185-193, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33431577

RESUMEN

OBJECTIVE: Intrahepatic cholangiocarcinoma (ICC)-a rare liver malignancy with limited therapeutic options-is characterised by aggressive progression, desmoplasia and vascular abnormalities. The aim of this study was to determine the role of placental growth factor (PlGF) in ICC progression. DESIGN: We evaluated the expression of PlGF in specimens from ICC patients and assessed the therapeutic effect of genetic or pharmacologic inhibition of PlGF in orthotopically grafted ICC mouse models. We evaluated the impact of PlGF stimulation or blockade in ICC cells and cancer-associated fibroblasts (CAFs) using in vitro 3-D coculture systems. RESULTS: PlGF levels were elevated in human ICC stromal cells and circulating blood plasma and were associated with disease progression. Single-cell RNA sequencing showed that the major impact of PlGF blockade in mice was enrichment of quiescent CAFs, characterised by high gene transcription levels related to the Akt pathway, glycolysis and hypoxia signalling. PlGF blockade suppressed Akt phosphorylation and myofibroblast activation in ICC-derived CAFs. PlGF blockade also reduced desmoplasia and tissue stiffness, which resulted in reopening of collapsed tumour vessels and improved blood perfusion, while reducing ICC cell invasion. Moreover, PlGF blockade enhanced the efficacy of standard chemotherapy in mice-bearing ICC. Conclusion PlGF blockade leads to a reduction in intratumorous hypoxia and metastatic dissemination, enhanced chemotherapy sensitivity and increased survival in mice-bearing aggressive ICC.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Factor de Crecimiento Placentario/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Neoplasias de los Conductos Biliares/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Humanos , Hipoxia/metabolismo , Ratones , Factor de Crecimiento Placentario/antagonistas & inhibidores
6.
Proc Natl Acad Sci U S A ; 116(7): 2662-2671, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30700544

RESUMEN

Cooption of the host vasculature is a strategy that some cancers use to sustain tumor progression without-or before-angiogenesis or in response to antiangiogenic therapy. Facilitated by certain growth factors, cooption can mediate tumor infiltration and confer resistance to antiangiogenic drugs. Unfortunately, this mode of tumor progression is difficult to target because the underlying mechanisms are not fully understood. Here, we analyzed the dynamics of vessel cooption during tumor progression and in response to antiangiogenic treatment in gliomas and brain metastases. We followed tumor evolution during escape from antiangiogenic treatment as cancer cells coopted, and apparently mechanically compressed, host vessels. To gain deeper understanding, we developed a mathematical model, which incorporated compression of coopted vessels, resulting in hypoxia and formation of new vessels by angiogenesis. Even if antiangiogenic therapy can block such secondary angiogenesis, the tumor can sustain itself by coopting existing vessels. Hence, tumor progression can only be stopped by combination therapies that judiciously block both angiogenesis and cooption. Furthermore, the model suggests that sequential blockade is likely to be more beneficial than simultaneous blockade.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Glioblastoma/irrigación sanguínea , Neovascularización Patológica/patología , Inhibidores de la Angiogénesis/uso terapéutico , Angiopoyetina 2/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Microscopía/métodos , Invasividad Neoplásica , Neovascularización Patológica/prevención & control , Oxígeno/metabolismo , Ratas , Reproducibilidad de los Resultados , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Biotechnol Bioeng ; 117(9): 2861-2874, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32501531

RESUMEN

The liver plays a complex role in metabolism and detoxification, and better tools are needed to understand its function and to develop liver-targeted therapies. In this study, we establish a mechanobiological model of liver transport and hepatocyte biology to elucidate the metabolism of urea and albumin, the production/detoxification of ammonia, and consumption of oxygen and nutrients. Since hepatocellular shear stress (SS) can influence the enzymatic activities of liver, the effect of SS on the urea and albumin synthesis are empirically modeled through the mechanotransduction mechanisms. The results demonstrate that the rheology and dynamics of the sinusoid flow can significantly affect liver metabolism. We show that perfusate rheology and blood hematocrit can affect urea and albumin production by changing hepatocyte mechanosensitive metabolism. The model can also simulate enzymatic diseases of the liver such as hyperammonemia I, hyperammonemia II, hyperarginemia, citrollinemia, and argininosuccinicaciduria, which disrupt the urea metabolism and ammonia detoxification. The model is also able to predict how aggregate cultures of hepatocytes differ from single cell cultures. We conclude that in vitro perfusable devices for the study of liver metabolism or personalized medicine should be designed with similar morphology and fluid dynamics as patient liver tissue. This robust model can be adapted to any type of hepatocyte culture to determine how hepatocyte viability, functionality, and metabolism are influenced by liver pathologies and environmental conditions.


Asunto(s)
Hígado , Mecanotransducción Celular/fisiología , Modelos Biológicos , Albúminas/metabolismo , Amoníaco/metabolismo , Animales , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hígado/citología , Hígado/metabolismo , Hígado/fisiología , Urea/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(5): 1033-1038, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096337

RESUMEN

Breast tumors contain tumorigenic cancer cells, termed "tumor-initiating cells" (TICs), which are capable of both replenishing themselves and giving rise to populations of nontumorigenic breast cancer cells (non-TICs). However, the molecular mechanisms responsible for breast tumor initiation remain poorly understood. Here we describe a chemical screening strategy to identify small molecules that enhance the effect of chemotherapeutic agents on TIC-enriched breast cancer cells. We identified proteins that interact with the lead compound C108, including the stress granule-associated protein, GTPase-activating protein (SH3 domain)-binding protein 2, G3BP2. G3BP2 regulates breast tumor initiation through the stabilization of Squamous cell carcinoma antigen recognized by T cells 3 (SART3) mRNA, which leads to increased expression of the pluripotency transcription factors Octamer-binding protein 4 (Oct-4) and Nanog Homeobox (Nanog). Our findings suggest that G3BP2 is important for the process of breast cancer initiation. Furthermore, these data suggest a possible connection between stress granule formation and tumor initiation in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/etiología , Carcinogénesis , Proteínas Portadoras/fisiología , Proteínas de Neoplasias/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos de Neoplasias/biosíntesis , Antígenos de Neoplasias/genética , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Línea Celular Tumoral , Gránulos Citoplasmáticos/fisiología , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteína Homeótica Nanog/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Paclitaxel/farmacología , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Neoplásico/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Bibliotecas de Moléculas Pequeñas
9.
Proc Natl Acad Sci U S A ; 113(16): 4476-81, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27044098

RESUMEN

Inhibition of the vascular endothelial growth factor (VEGF) pathway has failed to improve overall survival of patients with glioblastoma (GBM). We previously showed that angiopoietin-2 (Ang-2) overexpression compromised the benefit from anti-VEGF therapy in a preclinical GBM model. Here we investigated whether dual Ang-2/VEGF inhibition could overcome resistance to anti-VEGF treatment. We treated mice bearing orthotopic syngeneic (Gl261) GBMs or human (MGG8) GBM xenografts with antibodies inhibiting VEGF (B20), or Ang-2/VEGF (CrossMab, A2V). We examined the effects of treatment on the tumor vasculature, immune cell populations, tumor growth, and survival in both the Gl261 and MGG8 tumor models. We found that in the Gl261 model, which displays a highly abnormal tumor vasculature, A2V decreased vessel density, delayed tumor growth, and prolonged survival compared with B20. In the MGG8 model, which displays a low degree of vessel abnormality, A2V induced no significant changes in the tumor vasculature but still prolonged survival. In both the Gl261 and MGG8 models A2V reprogrammed protumor M2 macrophages toward the antitumor M1 phenotype. Our findings indicate that A2V may prolong survival in mice with GBM by reprogramming the tumor immune microenvironment and delaying tumor growth.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Anticuerpos Antineoplásicos/farmacología , Antineoplásicos/farmacología , Glioblastoma/tratamiento farmacológico , Macrófagos/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias Experimentales/tratamiento farmacológico , Ribonucleasa Pancreática/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Macrófagos/patología , Ratones , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Ribonucleasa Pancreática/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Physiol Rev ; 91(3): 1071-121, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21742796

RESUMEN

New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks of cancer. The imbalance of pro- and anti-angiogenic signaling within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and hyperpermeable vessels. The physiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow and oxygenation and increased tumor interstitial fluid pressure. These abnormalities and the resultant microenvironment fuel tumor progression, and also lead to a reduction in the efficacy of chemotherapy, radiotherapy, and immunotherapy. With the discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis, efforts have focused on novel therapeutics aimed at inhibiting VEGF activity, with the goal of regressing tumors by starvation. Unfortunately, clinical trials of anti-VEGF monotherapy in patients with solid tumors have been largely negative. Intriguingly, the combination of anti-VEGF therapy with conventional chemotherapy has improved survival in cancer patients compared with chemotherapy alone. These seemingly paradoxical results could be explained by a "normalization" of the tumor vasculature by anti-VEGF therapy. Preclinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more "mature" or "normal" phenotype. This "vascular normalization" is characterized by attenuation of hyperpermeability, increased vascular pericyte coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and interstitial fluid pressure. These in turn can lead to an improvement in the metabolic profile of the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics, the efficacy of radiotherapy and of effector immune cells, and a reduction in number of metastatic cells shed by tumors into circulation in mice. These findings are consistent with data from clinical trials of anti-VEGF agents in patients with various solid tumors. More recently, genetic and pharmacological approaches have begun to unravel some other key regulators of vascular normalization such as proteins that regulate tissue oxygen sensing (PHD2) and vessel maturation (PDGFRß, RGS5, Ang1/2, TGF-ß). Here, we review the pathophysiology of tumor angiogenesis, the molecular underpinnings and functional consequences of vascular normalization, and the implications for treatment of cancer and nonmalignant diseases.


Asunto(s)
Enfermedad , Neoplasias/irrigación sanguínea , Neoplasias/terapia , Neovascularización Patológica , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Vasos Sanguíneos/fisiopatología , Progresión de la Enfermedad , Humanos , Sistema Linfático/fisiopatología , Modelos Cardiovasculares , Neoplasias/patología , Neoplasias/fisiopatología , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
11.
Proc Natl Acad Sci U S A ; 112(35): 10938-43, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283382

RESUMEN

The ability of cells to sense and respond to physical forces has been recognized for decades, but researchers are only beginning to appreciate the fundamental importance of mechanical signals in biology. At the larger scale, there has been increased interest in the collective organization of cells and their ability to produce complex, "emergent" behaviors. Often, these complex behaviors result in tissue-level control mechanisms that manifest as biological oscillators, such as observed in fireflies, heartbeats, and circadian rhythms. In many cases, these complex, collective behaviors are controlled--at least in part--by physical forces imposed on the tissue or created by the cells. Here, we use mathematical simulations to show that two complementary mechanobiological oscillators are sufficient to control fluid transport in the lymphatic system: Ca(2+)-mediated contractions can be triggered by vessel stretch, whereas nitric oxide produced in response to the resulting fluid shear stress causes the lymphatic vessel to relax locally. Our model predicts that the Ca(2+) and NO levels alternate spatiotemporally, establishing complementary feedback loops, and that the resulting phasic contractions drive lymph flow. We show that this mechanism is self-regulating and robust over a range of fluid pressure environments, allowing the lymphatic vessels to provide pumping when needed but remain open when flow can be driven by tissue pressure or gravity. Our simulations accurately reproduce the responses to pressure challenges and signaling pathway manipulations observed experimentally, providing an integrated conceptual framework for lymphatic function.


Asunto(s)
Vasos Linfáticos/fisiología , Estrés Mecánico , Calcio/fisiología , Humanos , Modelos Biológicos , Contracción Muscular , Óxido Nítrico/fisiología , Transducción de Señal
12.
Semin Cell Dev Biol ; 38: 67-74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25636584

RESUMEN

The lymphatic system is responsible for controlling tissue fluid pressure by facilitating flow of lymph (i.e. the plasma and cells that enter the lymphatic system). Because lymph contains cells of the immune system, its transport is not only important for fluid homeostasis, but also immune function. Lymph drainage can occur via passive flow or active pumping, and much research has identified the key biochemical and mechanical factors that affect output. Although many studies and reviews have addressed how tissue properties and fluid mechanics (i.e. pressure gradients) affect lymph transport [1-3] there is less known about lymphatic mechanobiology. As opposed to passive mechanical properties, mechanobiology describes the active coupling of mechanical signals and biochemical pathways. Lymphatic vasomotion is the result of a fascinating system affected by mechanical forces exerted by the flowing lymph, including pressure-induced vessel stretch and flow-induced shear stresses. These forces can trigger or modulate biochemical pathways important for controlling the lymphatic contractions. Here, I review the current understanding of lymphatic vessel function, focusing on vessel mechanobiology, and summarize the prospects for a comprehensive understanding that integrates the mechanical and biomechanical control mechanisms in the lymphatic system.


Asunto(s)
Sistema Linfático/fisiología , Vasos Linfáticos/fisiología , Animales , Fenómenos Biofísicos , Endotelio Linfático/fisiología , Humanos , Estrés Mecánico
13.
Annu Rev Biomed Eng ; 18: 125-58, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-26863922

RESUMEN

Advances in our understanding of the structure and function of the lymphatic system have made it possible to identify its role in a variety of disease processes. Because it is involved not only in fluid homeostasis but also in immune cell trafficking, the lymphatic system can mediate and ultimately alter immune responses. Our rapidly increasing knowledge of the molecular control of the lymphatic system will inevitably lead to new and effective therapies for patients with lymphatic dysfunction. In this review, we discuss the molecular and physiological control of lymphatic vessel function and explore how the lymphatic system contributes to many disease processes, including cancer and lymphedema.


Asunto(s)
Linfangiogénesis/fisiología , Metástasis Linfática/fisiopatología , Sistema Linfático/fisiopatología , Vasos Linfáticos/fisiopatología , Linfedema/fisiopatología , Modelos Biológicos , Neoplasias/fisiopatología , Animales , Humanos
14.
PLoS Comput Biol ; 12(12): e1005231, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27935958

RESUMEN

The lymphatic system is responsible for transporting interstitial fluid back to the bloodstream, but unlike the cardiovascular system, lacks a centralized pump-the heart-to drive flow. Instead, each collecting lymphatic vessel can individually contract and dilate producing unidirectional flow enforced by intraluminal check valves. Due to the large number and spatial distribution of such pumps, high-level coordination would be unwieldy. This leads to the question of how each segment of lymphatic vessel responds to local signals that can contribute to the coordination of pumping on a network basis. Beginning with elementary fluid mechanics and known cellular behaviors, we show that two complementary oscillators emerge from i) mechanical stretch with calcium ion transport and ii) fluid shear stress induced nitric oxide production (NO). Using numerical simulation and linear stability analysis we show that the newly identified shear-NO oscillator shares similarities with the well-known Van der Pol oscillator, but has unique characteristics. Depending on the operating conditions, the shear-NO process may i) be inherently stable, ii) oscillate spontaneously in response to random disturbances or iii) synchronize with weak periodic stimuli. When the complementary shear-driven and stretch-driven oscillators interact, either may dominate, producing a rich family of behaviors similar to those observed in vivo.


Asunto(s)
Transporte Biológico/fisiología , Vasos Linfáticos/fisiología , Modelos Biológicos , Animales , Calcio/metabolismo , Ratones , Óxido Nítrico/metabolismo
16.
Int J Cancer ; 139(12): 2791-2801, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27543953

RESUMEN

The surface proteoglycan/glycoprotein layer (glycocalyx) on tumor cells has been associated with cellular functions that can potentially enable invasion and metastasis. In addition, aggressive tumor cells with high metastatic potential have enhanced invasion rates in response to interstitial flow stimuli in vitro. Our previous studies suggest that heparan sulfate (HS) in the glycocalyx plays an important role in this flow mediated mechanostransduction and upregulation of invasive and metastatic potential. In this study, highly metastatic renal cell carcinoma cells were genetically modified to suppress HS production by knocking down its synthetic enzyme NDST1. Using modified Boyden chamber and microfluidic assays, we show that flow-enhanced invasion is suppressed in HS deficient cells. To assess the ability of these cells to metastasize in vivo, parental or knockdown cells expressing fluorescence reporters were injected into kidney capsules in SCID mice. Histological analysis confirmed that there was a large reduction (95%) in metastasis to distant organs by tumors formed from the NDST1 knockdown cells compared to control cells with intact HS. The ability of these cells to invade surrounding tissue was also impaired. The substantial inhibition of metastasis and invasion upon reduction of HS suggests an active role for the tumor cell glycocalyx in tumor progression.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Proteoglicanos de Heparán Sulfato/metabolismo , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Animales , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Neoplasias Renales/genética , Masculino , Ratones , Ratones SCID , Metástasis de la Neoplasia , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/genética , Esferoides Celulares , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Carga Tumoral , Células Tumorales Cultivadas
17.
Proc Natl Acad Sci U S A ; 109(3): 911-6, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22203958

RESUMEN

Uncontrolled growth in a confined space generates mechanical compressive stress within tumors, but little is known about how such stress affects tumor cell behavior. Here we show that compressive stress stimulates migration of mammary carcinoma cells. The enhanced migration is accomplished by a subset of "leader cells" that extend filopodia at the leading edge of the cell sheet. Formation of these leader cells is dependent on cell microorganization and is enhanced by compressive stress. Accompanied by fibronectin deposition and stronger cell-matrix adhesion, the transition to leader-cell phenotype results in stabilization of persistent actomyosin-independent cell extensions and coordinated migration. Our results suggest that compressive stress accumulated during tumor growth can enable coordinated migration of cancer cells by stimulating formation of leader cells and enhancing cell-substrate adhesion. This novel mechanism represents a potential target for the prevention of cancer cell migration and invasion.


Asunto(s)
Neoplasias de la Mama/patología , Estrés Mecánico , Actomiosina/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Uniones Célula-Matriz/metabolismo , Citoesqueleto/metabolismo , Femenino , Humanos , Modelos Biológicos , Invasividad Neoplásica , Fenotipo , Seudópodos/metabolismo
18.
Proc Natl Acad Sci U S A ; 109(38): 15101-8, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22932871

RESUMEN

The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.


Asunto(s)
Adenocarcinoma/patología , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Animales , Vasos Sanguíneos/patología , Colágeno/química , Femenino , Fibroblastos/patología , Humanos , Ácido Hialurónico/química , Hipoxia , Inmunoterapia/métodos , Ratones , Ratones SCID , Modelos Teóricos , Trasplante de Neoplasias , Neoplasias/patología , Estrés Mecánico , Células del Estroma/citología
19.
Proc Natl Acad Sci U S A ; 109(43): 17561-6, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045683

RESUMEN

The recent approval of a prostate cancer vaccine has renewed hope for anticancer immunotherapies. However, the immunosuppressive tumor microenvironment may limit the effectiveness of current immunotherapies. Antiangiogenic agents have the potential to modulate the tumor microenvironment and improve immunotherapy, but they often are used at high doses in the clinic to prune tumor vessels and paradoxically may compromise various therapies. Here, we demonstrate that targeting tumor vasculature with lower vascular-normalizing doses, but not high antivascular/antiangiogenic doses, of an anti-VEGF receptor 2 (VEGFR2) antibody results in a more homogeneous distribution of functional tumor vessels. Furthermore, lower doses are superior to the high doses in polarizing tumor-associated macrophages from an immune inhibitory M2-like phenotype toward an immune stimulatory M1-like phenotype and in facilitating CD4(+) and CD8(+) T-cell tumor infiltration. Based on this mechanism, scheduling lower-dose anti-VEGFR2 therapy with T-cell activation induced by a whole cancer cell vaccine therapy enhanced anticancer efficacy in a CD8(+) T-cell-dependent manner in both immune-tolerant and immunogenic murine breast cancer models. These findings indicate that vascular-normalizing lower doses of anti-VEGFR2 antibody can reprogram the tumor microenvironment away from immunosuppression toward potentiation of cancer vaccine therapies. Given that the combinations of high doses of bevacizumab with chemotherapy have not improved overall survival of breast cancer patients, our study suggests a strategy to use antiangiogenic agents in breast cancer more effectively with active immunotherapy and potentially other anticancer therapies.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neoplasias de la Mama/irrigación sanguínea , Inmunoterapia , Microambiente Tumoral , Animales , Neoplasias de la Mama/inmunología , Femenino , Humanos , Ratones , Receptor 2 de Factores de Crecimiento Endotelial Vascular/inmunología
20.
Microvasc Res ; 96: 55-63, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24956510

RESUMEN

Visualization of the lymphatic system is clinically necessary during diagnosis or treatment of many conditions and diseases; it is used for identifying and monitoring lymphedema, for detecting metastatic lesions during cancer staging and for locating lymphatic structures so they can be spared during surgical procedures. Imaging lymphatic anatomy and function also plays an important role in experimental studies of lymphatic development and function, where spatial resolution and accessibility are better. Here, we review technologies for visualizing and imaging the lymphatic system for clinical applications. We then describe the use of lymphatic imaging in experimental systems as well as some of the emerging technologies for improving these methodologies.


Asunto(s)
Sistema Linfático/fisiología , Vasos Linfáticos/fisiología , Linfedema/patología , Neoplasias/patología , Animales , Medios de Contraste/química , Diagnóstico por Imagen/métodos , Homeostasis , Humanos , Metástasis Linfática , Linfografía , Ratones , Metástasis de la Neoplasia , Tomografía de Emisión de Positrones , Cintigrafía , Espectroscopía Infrarroja Corta , Tomografía Computarizada por Rayos X , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA