Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
New Phytol ; 242(5): 2059-2076, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38650352

RESUMEN

Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE ß1 (PI-4Kß1), and OBF-BINDING PROTEIN 1 (OBP1).


Asunto(s)
Estudio de Asociación del Genoma Completo , Reguladores del Crecimiento de las Plantas , Populus , Populus/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Redes Reguladoras de Genes , Epistasis Genética , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , Fenotipo , Transducción de Señal/genética
2.
Hum Mol Genet ; 26(7): 1391-1406, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28199695

RESUMEN

Understanding the interaction between humans and mosquitoes is a critical area of study due to the phenomenal burdens on public health from mosquito-transmitted diseases. In this study, we conducted the first genome-wide association studies (GWAS) of self-reported mosquito bite reaction size (n = 84,724), itchiness caused by bites (n = 69,057), and perceived attractiveness to mosquitoes (n = 16,576). In total, 15 independent significant (P < 5×10-8) associations were identified. These loci were enriched for immunity-related genes that are involved in multiple cytokine signalling pathways. We also detected suggestive enrichment of these loci in enhancer regions that are active in stimulated T-cells, as well as within loci previously identified as controlling central memory T-cell levels. Egger regression analysis between the traits suggests that perception of itchiness and attractiveness to mosquitoes is driven, at least in part, by the genetic determinants of bite reaction size.Our findings illustrate the complex genetic and immunological landscapes underpinning human interactions with mosquitoes.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Mordeduras y Picaduras de Insectos/genética , Prurito/genética , Animales , Culicidae/genética , Culicidae/patogenicidad , Genotipo , Humanos , Mordeduras y Picaduras de Insectos/patología , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Prurito/patología , Autoinforme , Linfocitos T/inmunología , Linfocitos T/metabolismo
3.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38323677

RESUMEN

Important tasks in biomedical discovery such as predicting gene functions, gene-disease associations, and drug repurposing opportunities are often framed as network edge prediction. The number of edges connecting to a node, termed degree, can vary greatly across nodes in real biomedical networks, and the distribution of degrees varies between networks. If degree strongly influences edge prediction, then imbalance or bias in the distribution of degrees could lead to nonspecific or misleading predictions. We introduce a network permutation framework to quantify the effects of node degree on edge prediction. Our framework decomposes performance into the proportions attributable to degree and the network's specific connections using network permutation to generate features that depend only on degree. We discover that performance attributable to factors other than degree is often only a small portion of overall performance. Researchers seeking to predict new or missing edges in biological networks should use our permutation approach to obtain a baseline for performance that may be nonspecific because of degree. We released our methods as an open-source Python package (https://github.com/hetio/xswap/).


Asunto(s)
Algoritmos , Probabilidad
4.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38325329

RESUMEN

Plant regeneration is an important dimension of plant propagation and a key step in the production of transgenic plants. However, regeneration capacity varies widely among genotypes and species, the molecular basis of which is largely unknown. Association mapping methods such as genome-wide association studies (GWAS) have long demonstrated abilities to help uncover the genetic basis of trait variation in plants; however, the performance of these methods depends on the accuracy and scale of phenotyping. To enable a large-scale GWAS of in planta callus and shoot regeneration in the model tree Populus, we developed a phenomics workflow involving semantic segmentation to quantify regenerating plant tissues over time. We found that the resulting statistics were of highly non-normal distributions, and thus employed transformations or permutations to avoid violating assumptions of linear models used in GWAS. We report over 200 statistically supported quantitative trait loci (QTLs), with genes encompassing or near to top QTLs including regulators of cell adhesion, stress signaling, and hormone signaling pathways, as well as other diverse functions. Our results encourage models of hormonal signaling during plant regeneration to consider keystone roles of stress-related signaling (e.g. involving jasmonates and salicylic acid), in addition to the auxin and cytokinin pathways commonly considered. The putative regulatory genes and biological processes we identified provide new insights into the biological complexity of plant regeneration, and may serve as new reagents for improving regeneration and transformation of recalcitrant genotypes and species.


Asunto(s)
Estudio de Asociación del Genoma Completo , Populus , Populus/genética , Genes de Plantas , Sitios de Carácter Cuantitativo , Ácidos Indolacéticos
5.
bioRxiv ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36711569

RESUMEN

Important tasks in biomedical discovery such as predicting gene functions, gene-disease associations, and drug repurposing opportunities are often framed as network edge prediction. The number of edges connecting to a node, termed degree, can vary greatly across nodes in real biomedical networks, and the distribution of degrees varies between networks. If degree strongly influences edge prediction, then imbalance or bias in the distribution of degrees could lead to nonspecific or misleading predictions. We introduce a network permutation framework to quantify the effects of node degree on edge prediction. Our framework decomposes performance into the proportions attributable to degree and the network's specific connections. We discover that performance attributable to factors other than degree is often only a small portion of overall performance. Degree's predictive performance diminishes when the networks used for training and testing-despite measuring the same biological relationships-were generated using distinct techniques and hence have large differences in degree distribution. We introduce the permutation-derived edge prior as the probability that an edge exists based only on degree. The edge prior shows excellent discrimination and calibration for 20 biomedical networks (16 bipartite, 3 undirected, 1 directed), with AUROCs frequently exceeding 0.85. Researchers seeking to predict new or missing edges in biological networks should use the edge prior as a baseline to identify the fraction of performance that is nonspecific because of degree. We released our methods as an open-source Python package (https://github.com/hetio/xswap/).

6.
bioRxiv ; 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36711546

RESUMEN

Hetnets, short for "heterogeneous networks", contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet connects 11 types of nodes - including genes, diseases, drugs, pathways, and anatomical structures - with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious not only how metformin is related to breast cancer, but also how the GJA1 gene might be involved in insomnia. We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any two nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). We find that predictions are broadly similar to those from previously described supervised approaches for certain node type pairs. Scoring of individual paths is based on the most specific paths of a given type. Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. We implemented the method on Hetionet and provide an online interface at https://het.io/search . We provide an open source implementation of these methods in our new Python package named hetmatpy .

7.
Plant Direct ; 7(7): e507, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456612

RESUMEN

Eucalyptus spp. are widely cultivated for the production of pulp, energy, essential oils, and as ornamentals. However, their dispersal from plantings, especially when grown as an exotic, can cause ecological disruptions. To provide new tools for prevention of sexual dispersal by pollen as well as to induce male-sterility for hybrid breeding, we studied the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated knockout of three floral genes in both FT-expressing (early-flowering) and non-FT genotypes. We report male-sterile phenotypes resulting from knockout of the homologs of all three genes, including one involved in meiosis and two regulating early stages of pollen development. The targeted genes were Eucalyptus homologs of REC8 (EREC8), TAPETAL DEVELOPMENT AND FUNCTION 1 (ETDF1), and HECATE3 (EHEC3-like). The erec8 knockouts yielded abnormal pollen grains and a predominance of inviable pollen, whereas the etdf1 and ehec3-like knockouts produced virtually no pollen. In addition to male-sterility, both erec8 and ehec3-like knockouts may provide complete sterility because the failure of erec8 to undergo meiosis is expected to be independent of sex, and ehec3-like knockouts produce flowers with shortened styles and no visible stigmas. When comparing knockouts to controls in wild-type (non-early-flowering) backgrounds, we did not find visible morphological or statistical differences in vegetative traits, including average single-leaf mass, stem volume, density of oil glands, or chlorophyll in leaves. Loss-of-function mutations in any of these three genes show promise as a means of inducing male- or complete sterility without impacting vegetative development.

8.
Hortic Res ; 10(8): uhad125, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37560019

RESUMEN

Adventitious rooting (AR) is critical to the propagation, breeding, and genetic engineering of trees. The capacity for plants to undergo this process is highly heritable and of a polygenic nature; however, the basis of its genetic variation is largely uncharacterized. To identify genetic regulators of AR, we performed a genome-wide association study (GWAS) using 1148 genotypes of Populus trichocarpa. GWASs are often limited by the abilities of researchers to collect precise phenotype data on a high-throughput scale; to help overcome this limitation, we developed a computer vision system to measure an array of traits related to adventitious root development in poplar, including temporal measures of lateral and basal root length and area. GWAS was performed using multiple methods and significance thresholds to handle non-normal phenotype statistics and to gain statistical power. These analyses yielded a total of 277 unique associations, suggesting that genes that control rooting include regulators of hormone signaling, cell division and structure, reactive oxygen species signaling, and other processes with known roles in root development. Numerous genes with uncharacterized functions and/or cryptic roles were also identified. These candidates provide targets for functional analysis, including physiological and epistatic analyses, to better characterize the complex polygenic regulation of AR.

9.
EMBO Mol Med ; 15(1): e16359, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36504281

RESUMEN

Studies of the genetic regulation of cerebrospinal fluid (CSF) proteins may reveal pathways for treatment of neurological diseases. 398 proteins in CSF were measured in 1,591 participants from the BioFINDER study. Protein quantitative trait loci (pQTL) were identified as associations between genetic variants and proteins, with 176 pQTLs for 145 CSF proteins (P < 1.25 × 10-10 , 117 cis-pQTLs and 59 trans-pQTLs). Ventricular volume (measured with brain magnetic resonance imaging) was a confounder for several pQTLs. pQTLs for CSF and plasma proteins were overall correlated, but CSF-specific pQTLs were also observed. Mendelian randomization analyses suggested causal roles for several proteins, for example, ApoE, CD33, and GRN in Alzheimer's disease, MMP-10 in preclinical Alzheimer's disease, SIGLEC9 in amyotrophic lateral sclerosis, and CD38, GPNMB, and ADAM15 in Parkinson's disease. CSF levels of GRN, MMP-10, and GPNMB were altered in Alzheimer's disease, preclinical Alzheimer's disease, and Parkinson's disease, respectively. These findings point to pathways to be explored for novel therapies. The novel finding that ventricular volume confounded pQTLs has implications for design of future studies of the genetic regulation of the CSF proteome.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Metaloproteinasa 10 de la Matriz/genética , Enfermedad de Parkinson/genética , Proteómica , Sitios de Carácter Cuantitativo , Biomarcadores/líquido cefalorraquídeo , Antígenos CD , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Proteínas de la Membrana/genética , Proteínas ADAM/genética , Glicoproteínas de Membrana/genética
10.
Acta Neuropathol Commun ; 11(1): 68, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101235

RESUMEN

Amyloid PET imaging has been crucial for detecting the accumulation of amyloid beta (Aß) deposits in the brain and to study Alzheimer's disease (AD). We performed a genome-wide association study on the largest collection of amyloid imaging data (N = 13,409) to date, across multiple ethnicities from multicenter cohorts to identify variants associated with brain amyloidosis and AD risk. We found a strong APOE signal on chr19q.13.32 (top SNP: APOE ɛ4; rs429358; ß = 0.35, SE = 0.01, P = 6.2 × 10-311, MAF = 0.19), driven by APOE ɛ4, and five additional novel associations (APOE ε2/rs7412; rs73052335/rs5117, rs1081105, rs438811, and rs4420638) independent of APOE ɛ4. APOE ɛ4 and ε2 showed race specific effect with stronger association in Non-Hispanic Whites, with the lowest association in Asians. Besides the APOE, we also identified three other genome-wide loci: ABCA7 (rs12151021/chr19p.13.3; ß = 0.07, SE = 0.01, P = 9.2 × 10-09, MAF = 0.32), CR1 (rs6656401/chr1q.32.2; ß = 0.1, SE = 0.02, P = 2.4 × 10-10, MAF = 0.18) and FERMT2 locus (rs117834516/chr14q.22.1; ß = 0.16, SE = 0.03, P = 1.1 × 10-09, MAF = 0.06) that all colocalized with AD risk. Sex-stratified analyses identified two novel female-specific signals on chr5p.14.1 (rs529007143, ß = 0.79, SE = 0.14, P = 1.4 × 10-08, MAF = 0.006, sex-interaction P = 9.8 × 10-07) and chr11p.15.2 (rs192346166, ß = 0.94, SE = 0.17, P = 3.7 × 10-08, MAF = 0.004, sex-interaction P = 1.3 × 10-03). We also demonstrated that the overall genetic architecture of brain amyloidosis overlaps with that of AD, Frontotemporal Dementia, stroke, and brain structure-related complex human traits. Overall, our results have important implications when estimating the individual risk to a population level, as race and sex will needed to be taken into account. This may affect participant selection for future clinical trials and therapies.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Femenino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/genética , Estudio de Asociación del Genoma Completo , Amiloidosis/diagnóstico por imagen , Amiloidosis/genética , Amiloide , Apolipoproteínas E/genética
11.
PLoS Genet ; 5(3): e1000429, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19300500

RESUMEN

The ratio of forced expiratory volume in one second to forced vital capacity (FEV(1)/FVC) is a measure used to diagnose airflow obstruction and is highly heritable. We performed a genome-wide association study in 7,691 Framingham Heart Study participants to identify single-nucleotide polymorphisms (SNPs) associated with the FEV(1)/FVC ratio, analyzed as a percent of the predicted value. Identified SNPs were examined in an independent set of 835 Family Heart Study participants enriched for airflow obstruction. Four SNPs in tight linkage disequilibrium on chromosome 4q31 were associated with the percent predicted FEV(1)/FVC ratio with p-values of genome-wide significance in the Framingham sample (best p-value = 3.6e-09). One of the four chromosome 4q31 SNPs (rs13147758; p-value 2.3e-08 in Framingham) was genotyped in the Family Heart Study and produced evidence of association with the same phenotype, percent predicted FEV(1)/FVC (p-value = 2.0e-04). The effect estimates for association in the Framingham and Family Heart studies were in the same direction, with the minor allele (G) associated with higher FEV(1)/FVC ratio levels. Results from the Family Heart Study demonstrated that the association extended to FEV(1) and dichotomous airflow obstruction phenotypes, particularly among smokers. The SNP rs13147758 was associated with the percent predicted FEV(1)/FVC ratio in independent samples from the Framingham and Family Heart Studies producing a combined p-value of 8.3e-11, and this region of chromosome 4 around 145.68 megabases was associated with COPD in three additional populations reported in the accompanying manuscript. The associated SNPs do not lie within a gene transcript but are near the hedgehog-interacting protein (HHIP) gene and several expressed sequence tags cloned from fetal lung. Though it is unclear what gene or regulatory effect explains the association, the region warrants further investigation.


Asunto(s)
Genoma Humano , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Proteínas Portadoras/genética , Cromosomas Humanos Par 4 , Volumen Espiratorio Forzado , Predisposición Genética a la Enfermedad/epidemiología , Genómica/métodos , Humanos , Desequilibrio de Ligamiento , Pulmón/fisiopatología , Glicoproteínas de Membrana/genética , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Pruebas de Función Respiratoria , Capacidad Vital
12.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37503959

RESUMEN

BACKGROUND: Hetnets, short for "heterogeneous networks," contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes-including genes, diseases, drugs, pathways, and anatomical structures-with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia. FINDINGS: We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. CONCLUSION: We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy.


Asunto(s)
Algoritmos , Probabilidad
13.
Plant Phenomics ; 2022: 9893639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059601

RESUMEN

The abilities of plant biologists and breeders to characterize the genetic basis of physiological traits are limited by their abilities to obtain quantitative data representing precise details of trait variation, and particularly to collect this data at a high-throughput scale with low cost. Although deep learning methods have demonstrated unprecedented potential to automate plant phenotyping, these methods commonly rely on large training sets that can be time-consuming to generate. Intelligent algorithms have therefore been proposed to enhance the productivity of these annotations and reduce human efforts. We propose a high-throughput phenotyping system which features a Graphical User Interface (GUI) and a novel interactive segmentation algorithm: Semantic-Guided Interactive Object Segmentation (SGIOS). By providing a user-friendly interface and intelligent assistance with annotation, this system offers potential to streamline and accelerate the generation of training sets, reducing the effort required by the user. Our evaluation shows that our proposed SGIOS model requires fewer user inputs compared to the state-of-art models for interactive segmentation. As a case study of the use of the GUI applied for genetic discovery in plants, we present an example of results from a preliminary genome-wide association study (GWAS) of in planta regeneration in Populus trichocarpa (poplar). We further demonstrate that the inclusion of a semantic prior map with SGIOS can accelerate the training process for future GWAS, using a sample of a dataset extracted from a poplar GWAS of in vitro regeneration. The capabilities of our phenotyping system surpass those of unassisted humans to rapidly and precisely phenotype our traits of interest. The scalability of this system enables large-scale phenomic screens that would otherwise be time-prohibitive, thereby providing increased power for GWAS, mutant screens, and other studies relying on large sample sizes to characterize the genetic basis of trait variation. Our user-friendly system can be used by researchers lacking a computational background, thus helping to democratize the use of deep segmentation as a tool for plant phenotyping.

14.
Hortic Res ; 8(1): 167, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34333535

RESUMEN

The spread of transgenes and exotic germplasm from planted crops into wild or feral species is a difficult problem for public and regulatory acceptance of genetically engineered plants, particularly for wind-pollinated trees such as poplar. We report that overexpression of a poplar homolog of the floral repressor SHORT VEGETATIVE PHASE-LIKE (SVL), a homolog of the Arabidopsis MADS-box repressor SHORT VEGETATIVE PHASE (SVP), delayed the onset of flowering several years in three genotypes of field-grown transgenic poplars. Higher expression of SVL correlated with a delay in flowering onset and lower floral abundance, and did not cause morphologically obvious or statistically significant effects on leaf characteristics, tree form, or stem volume. Overexpression effects on reproductive and vegetative phenology in spring was modest and genotype-specific. Our results suggest that use of SVL and related floral repressors can be useful tools to enable a high level of containment for vegetatively propagated short-rotation woody energy or pulp crops.

15.
Elife ; 92020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33200983

RESUMEN

The lymphatic vasculature is involved in the pathogenesis of acute cardiac injuries, but little is known about its role in chronic cardiac dysfunction. Here, we demonstrate that angiotensin II infusion induced cardiac inflammation and fibrosis at 1 week and caused cardiac dysfunction and impaired lymphatic transport at 6 weeks in mice, while co-administration of VEGFCc156s improved these parameters. To identify novel mechanisms underlying this protection, RNA sequencing analysis in distinct cell populations revealed that VEGFCc156s specifically modulated angiotensin II-induced inflammatory responses in cardiac and peripheral lymphatic endothelial cells. Furthermore, telemetry studies showed that while angiotensin II increased blood pressure acutely in all animals, VEGFCc156s-treated animals displayed a delayed systemic reduction in blood pressure independent of alterations in angiotensin II-mediated aortic stiffness. Overall, these results demonstrate that VEGFCc156s had a multifaceted therapeutic effect to prevent angiotensin II-induced cardiac dysfunction by improving cardiac lymphatic function, alleviating fibrosis and inflammation, and ameliorating hypertension.


Asunto(s)
Células Endoteliales/metabolismo , Cardiopatías/metabolismo , Miocardio/metabolismo , Factor C de Crecimiento Endotelial Vascular/farmacología , Angiotensina II/toxicidad , Animales , Biomarcadores , Técnicas de Sustitución del Gen , Estudio de Asociación del Genoma Completo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Hipertensión/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Análisis de Secuencia de ARN , Proteínas Supresoras de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/administración & dosificación
16.
Acta Neuropathol Commun ; 7(1): 169, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694701

RESUMEN

To date, the development of disease-modifying therapies for Alzheimer's disease (AD) has largely focused on the removal of amyloid beta Aß fragments from the CNS. Proteomic profiling of patient fluids may help identify novel therapeutic targets and biomarkers associated with AD pathology. Here, we applied the Olink™ ProSeek immunoassay to measure 270 CSF and plasma proteins across 415 Aß- negative cognitively normal individuals (Aß- CN), 142 Aß-positive CN (Aß+ CN), 50 Aß- mild cognitive impairment (MCI) patients, 75 Aß+ MCI patients, and 161 Aß+ AD patients from the Swedish BioFINDER study. A validation cohort included 59 Aß- CN, 23 Aß- + CN, 44 Aß- MCI and 53 Aß+ MCI. To compare protein concentrations in patients versus controls, we applied multiple linear regressions adjusting for age, gender, medications, smoking and mean subject-level protein concentration, and corrected findings for false discovery rate (FDR, q < 0.05). We identified, and replicated, altered levels of ten CSF proteins in Aß+ individuals, including CHIT1, SMOC2, MMP-10, LDLR, CD200, EIF4EBP1, ALCAM, RGMB, tPA and STAMBP (- 0.14 < d < 1.16; q < 0.05). We also identified and replicated alterations of six plasma proteins in Aß+ individuals OSM, MMP-9, HAGH, CD200, AXIN1, and uPA (- 0.77 < d < 1.28; q < 0.05). Multiple analytes associated with cognitive performance and cortical thickness (q < 0.05). Plasma biomarkers could distinguish AD dementia (AUC = 0.94, 95% CI = 0.87-0.98) and prodromal AD (AUC = 0.78, 95% CI = 0.68-0.87) from CN. These findings reemphasize the contributions of immune markers, phospholipids, angiogenic proteins and other biomarkers downstream of, and potentially orthogonal to, Aß- and tau in AD, and identify candidate biomarkers for earlier detection of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Proteómica/métodos , Anciano , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Estudios de Cohortes , Femenino , Humanos , Inmunoensayo/métodos , Masculino , Persona de Mediana Edad
17.
Hum Genet ; 124(1): 95-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18587682

RESUMEN

Genetic variants in embryonic lethal, abnormal vision, Drosophila-like 4 (ELAVL4) have been reported to be associated with onset age of Parkinson disease (PD) or risk for PD affection in Caucasian populations. In the current study we genotyped three single nucleotide polymorphisms in ELAVL4 in a Caucasian study sample consisting of 712 PD patients and 312 unrelated controls from the GenePD study. The minor allele of rs967582 was associated with increased risk of PD (odds ratio = 1.46, nominal P value = 0.011) in the GenePD population. The minor allele of rs967582 was also the risk allele for PD affection or earlier onset age in the previously studied populations. This replication of association with rs967582 in a third cohort further implicates ELAVL4 as a PD susceptibility gene.


Asunto(s)
Proteínas ELAV/genética , Ligamiento Genético , Enfermedad de Parkinson/genética , Edad de Inicio , Anciano , Estudios de Cohortes , Bases de Datos Genéticas , Proteínas ELAV/fisiología , Proteína 4 Similar a ELAV , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Polimorfismo Genético
18.
BMC Med ; 6: 32, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18986508

RESUMEN

BACKGROUND: We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (LRRK2)-related Parkinson's disease (PD) in a large sample of familial PD. The most frequently seen LRRK2 mutation, Gly2019Ser (G2019S), is associated with approximately 5 to 6% of familial PD cases and 1 to 2% of idiopathic cases, making it the most common known genetic cause of PD. Studies of the penetrance of LRRK2 mutations have produced a wide range of estimates, possibly due to differences in study design and recruitment, including in particular differences between samples of familial PD versus sporadic PD. METHODS: A sample, including 903 affected and 58 unaffected members from 509 families ascertained for having two or more PD-affected members, 126 randomly ascertained PD patients and 197 controls, was screened for five different LRRK2 mutations. Penetrance was estimated in families of LRRK2 carriers with consideration of the inherent bias towards increased penetrance in a familial sample. RESULTS: Thirty-one out of 509 families with multiple cases of PD (6.1%) were found to have 58 LRRK2 mutation carriers (6.4%). Twenty-nine of the 31 families had G2019S mutations while two had R1441C mutations. No mutations were identified among controls or unaffected relatives of PD cases. Nine PD-affected relatives of G2019S carriers did not carry the LRRK2 mutation themselves. At the maximum observed age range of 90 to 94 years, the unbiased estimated penetrance was 67% for G2019S families, compared with a baseline PD risk of 17% seen in the non-LRRK2-related PD families. CONCLUSION: Lifetime penetrance of LRRK2 estimated in the unascertained relatives of multiplex PD families is greater than that reported in studies of sporadically ascertained LRRK2 cases, suggesting that inherited susceptibility factors may modify the penetrance of LRRK2 mutations. In addition, the presence of nine PD phenocopies in the LRRK2 families suggests that these susceptibility factors may also increase the risk of non-LRRK2-related PD. No differences in penetrance were found between men and women, suggesting that the factors that influence penetrance for LRRK2 carriers are independent of the factors which increase PD prevalence in men.


Asunto(s)
Glicina/genética , Mutación/genética , Enfermedad de Parkinson/genética , Penetrancia , Proteínas Serina-Treonina Quinasas/genética , Serina/genética , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/patología , Distribución Aleatoria , Factores Sexuales
19.
BMC Med Genet ; 9: 46, 2008 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-18498660

RESUMEN

BACKGROUND: The chromosome 7q32 region is linked to metabolic syndrome and obesity related traits in the Family Heart Study. As part of a fine mapping study of the region, we evaluated the relationship of polymorphisms to fasting glucose levels and Type 2 diabetes. METHODS: Thirty-nine HapMap defined tag SNPs in a 1.08 Mb region and a novel deletion polymorphism were genotyped in 2,603 participants of the NHLBI Family Heart Study (FHS). Regression modeling, adjusting for BMI, age, sex, smoking and the TCF7L2 polymorphism, was used to evaluate the association of these polymorphisms with T2D and fasting glucoses levels. RESULTS: The deletion polymorphism confers a protective effect for T2D, with homozygous deletion carriers having a 53% reduced risk compared to non-deleted carriers. Among non-diabetics, the deletion was significantly associated with lower fasting glucose levels in men (p = 0.038) but not women (p = 0.118). In addition, seven SNPs near the deletion were significantly associated (p < 0.01) to diabetes. CONCLUSION: Chromosome 7q32 contains both SNPs and a deletion that were associated to T2D. Although the deletion region contains several islands of strongly conserved sequence, it is not known to contain a transcribed gene. The closest nearby gene, EXOC4, is involved in insulin-stimulated glucose transport and may be a candidate for this association. Further work is needed to determine if the deletion represents a functional variant or may be in linkage disequilibrium with a functional mutation influencing EXOC4 or another nearby gene.


Asunto(s)
Glucemia/genética , Glucemia/metabolismo , Cromosomas Humanos Par 7 , Diabetes Mellitus Tipo 2/genética , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , Eliminación de Secuencia , Proteínas de Transporte Vesicular/genética , Mapeo Cromosómico , Familia , Cardiopatías/genética , Humanos , Desequilibrio de Ligamiento , Síndrome Metabólico/genética , National Heart, Lung, and Blood Institute (U.S.) , Obesidad/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estados Unidos
20.
Front Plant Sci ; 9: 1443, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333845

RESUMEN

The incorporation of DNA into plant genomes followed by regeneration of non-chimeric stable plants (transformation) remains a major challenge for most plant species. Forest trees are particularly difficult as a result of their biochemistry, aging, desire for clonal fidelity, delayed reproduction, and high diversity. We review two complementary approaches to transformation that appear to hold promise for forest trees.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA