Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 76(9): 1641-1652, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30539200

RESUMEN

The efficacy of chemotherapy is mostly restricted by the drug resistance developed during the course of cancer treatment. Mitophagy, as a pro-survival mechanism, crucially maintains mitochondrial homeostasis and it is one of the mechanisms that cancer cells adopt for their progression. On the other hand, mitochondrial apoptosis, a precisely regulated form of cell death, acts as a tumor-suppressive mechanism by targeting cancer cells. Mitochondrial lipids, such as cardiolipin, ceramide, and sphingosine-1-phosphate, act as a mitophageal signal for the clearance of damaged mitochondria by interacting with mitophagic machinery as well as activate mitochondrial apoptosis via the release of cytochrome c into the cytoplasm. In the recent time, the lipid-mediated lethal mitophagy has also been used as an alternative approach to abolish the survival role of lipid in cancer. Therefore, by targeting mitochondrial lipids in cancer cells, the detailed mechanism linked to drug resistance can be unraveled. In this review, we precisely discuss the current knowledge about the multifaceted role of mitochondrial lipid in regulating mitophagy and mitochondrial apoptosis and its application in effective cancer therapy.


Asunto(s)
Cardiolipinas/metabolismo , Ceramidas/metabolismo , Lisofosfolípidos/metabolismo , Mitocondrias/patología , Mitofagia/fisiología , Esfingosina/análogos & derivados , Apoptosis/fisiología , Citocromos c/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Esfingosina/metabolismo
2.
Mol Carcinog ; 57(5): 664-677, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29457276

RESUMEN

Eradicating cancer stem cells (CSCs) in colorectal cancer (CRC) through differentiation therapy is a promising approach for cancer treatment. Our retrospective tumor-specimen analysis elucidated alteration in the expression of bone morphogenetic protein 2 (BMP-2) and ß-catenin during the colon cancer progression, indicating that their possible intervention through "forced differentiation" in colon cancer remission. We reveal that Abrus agglutinin (AGG) induces the colon CSCs differentiation, and enhances sensitivity to the anticancer therapeutics. The low dose AGG (max. dose = 100 ng/mL) decreased the expression of stemness-associated molecules such as CD44 and ß-catenin in the HT-29 cell derived colonospheres. Further, AGG augmented colonosphere differentiation, as demonstrated by the enhanced CK20/CK7 expression ratio and induced alkaline phosphatase activity. Interestingly, the AGG-induced expression of BMP-2 and the AGG-induced differentiation were demonstrated to be critically dependent on BMP-2 in the colonospheres. Similarly, autophagy-induction by AGG was associated with colonosphere differentiation and the gene silencing of BMP-2 led to the reduced accumulation of LC3-II, suggesting that AGG-induced autophagy is dependent on BMP-2. Furthermore, hVps34 binds strongly to BMP-2, indicating a possible association of BMP-2 with the process of autophagy. Moreover, the reduction in the self-renewal capacity of the colonospheres was associated with AGG-augmented autophagic degradation of ß-catenin through an interaction with the autophagy adaptor protein p62. In the subcutaneous HT-29 xenograft model, AGG profoundly inhibited the growth of tumors through an increase in BMP-2 expression and LC3-II puncta, and a decrease in ß-catenin expression, confirming the antitumor potential of AGG through induction of differentiation in colorectal cancer.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Células Madre Neoplásicas/citología , Lectinas de Plantas/farmacología , beta Catenina/química , Animales , Autofagia , Proteína Morfogenética Ósea 2/genética , Diferenciación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Proteolisis , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
3.
Mol Carcinog ; 56(11): 2400-2413, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28543759

RESUMEN

Oral cancer, a type of head and neck cancer, is ranked as one of the top most malignancies in India. Herein, we evaluated the anticancer efficacy of Abrus agglutinin (AGG), a plant lectin, in oral squamous cell carcinoma. AGG selectively inhibited cell growth, and caused cell cycle arrest and mitochondrial apoptosis through a reactive oxygen species (ROS)-mediated ATM-p73 dependent pathway in FaDu cells. AGG-induced ROS accumulation was identified as the major mechanism regulating apoptosis, DNA damage and DNA-damage response, which were significantly reversed by ROS scavenger N-acetylcysteine (NAC). Moreover, AGG was found to interact with mitochondrial manganese-dependent superoxide dismutase that might inhibit its activity and increase ROS in FaDu cells. In oral cancer p53 is mutated, thus we focused on p73; AGG resulted in p73 upregulation and knock down of p73 caused a decrease in AGG-induced apoptosis. Interestingly, AGG-dependent p73 expression was found to be regulated by ROS, which was reversed by NAC treatment. A reduction in the level of p73 in AGG-treated shATM cells was found to be associated with a decreased apoptosis. Moreover, administration of AGG (50 µg/kg body weight) significantly inhibited the growth of FaDu xenografts in athymic nude mice. In immunohistochemical analysis, the xenografts from AGG-treated mice displayed a decrease in PCNA expression and an increase in caspase-3 activation as compared to the controls. In conclusion, we established a connection among ROS, ATM and p73 in AGG-induced apoptosis, which might be useful in enhancing the therapeutic targeting of p53 deficient oral squamous cell carcinoma.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Lectinas de Plantas/uso terapéutico , Proteína Tumoral p73/metabolismo , Abrus/química , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Moleculares , Boca/efectos de los fármacos , Boca/metabolismo , Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Lectinas de Plantas/química , Lectinas de Plantas/farmacología , Especies Reactivas de Oxígeno/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165952, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841734

RESUMEN

Autophagy can either be cytoprotective or promote cell death in a context-dependent manner in response to stress. How autophagy leads to autophagy dependent cell death requires further clarification. In this study, we document a nonlinear roller coaster form of autophagy oscillation when cells are subjected to different stress conditions. Serum starvation induces an initial primary autophagic peak at 6 h, that helps to replenish cells with de novo fluxed nutrients, but protracted stress lead to a secondary autophagic peak around 48 h. Time kinetic studies indicate that the primary autophagic peak is reversible, whereas the secondary autophagic peak is irreversible and leads to cell death. Key players involved in different stages of autophagy including initiation, elongation and degradation during this oscillatory sequence were identified. A similar molecular pattern was intensified under apoptosis-deficient conditions. mTOR was the central molecule regulating this autophagic activity, and upon knockdown a steady increase of autophagy without any non-linear fluctuation was evident. An unbiased proteome screening approach was employed to identify the autophagy molecules potentially regulating these autophagic peaks. Our proteomics analysis has identified Annexin A2 as a stress-induced protein to implicate in autophagy fluctuation and its deficiency reduced autophagy. Moreover, we report that mTOR in its phosphorylated condition interacts with Annexin A2 to induce autophagy fluctuation by altering its cellular localization. The work highlights the molecular mechanism of a mTOR-dependent roller coaster fluctuation of autophagy and autophagy dependent cell death during prolong stress.


Asunto(s)
Anexina A2/metabolismo , Autofagia , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo , Células A549 , Células HeLa , Humanos , Fosforilación , Células Tumorales Cultivadas
5.
Methods Mol Biol ; 2002: 129-139, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30269299

RESUMEN

Cancer stem cells (CSCs) are a subpopulation of cells within a heterogeneous tumor that have enhanced biologic properties such as increased capacity for self-renewal, increased tumorigenicity, enhanced differentiation capacity, and resistance to chemo- and radiotherapies. This unit describes protocols to isolate and characterize potential cancer stem cells from a solid tumor (oral cancer). This involves creating a single-cell suspension from tumor tissue, tagging the cell subpopulation of interest, and sorting cells into different populations. Finally, the sorted subpopulations can be evaluated for their ability to meet the functional requirements of a CSC, which primarily include increased tumorigenicity in an in vivo xenograft assay. Mastering the protocols in this unit will allow the researcher to study populations of cells that may have properties of CSCs.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Neoplasias de la Boca/patología , Células Madre Neoplásicas/patología , Animales , Separación Celular , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias de la Boca/metabolismo , Células Madre Neoplásicas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Methods Mol Biol ; 1854: 209-222, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29855817

RESUMEN

Macroautophagy (autophagy) is a conserved lysosomal-based intracellular degradation pathway. Here, we present different methods used for monitoring autophagy at cellular level. The methods involve Atg8/LC3 detection and quantification by Western blot, autophagic flux measurement through Western blot, direct fluorescence microscopy or indirect immunofluorescence, and finally traffic light assay using tf-LC3-II. Monitoring autophagic flux is experimentally challenging but obviously a prerequisite for the proper investigation of the process. These methods are suitable for screening purposes and can be used for measurements in cell lysates as well as in living cells. These assays have proven useful for the identification of genes and small molecules that regulate autophagy in mammalian cells.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Western Blotting , Células HeLa , Humanos , Lisosomas/metabolismo , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA