Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Mol Cell Cardiol ; 126: 105-117, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30472251

RESUMEN

Physiologically, following myocardial infarction (MI), retinoid levels elevate locally in the infarcted area. Whereas therapeutic systemic application of retinoids was shown to reduce the progression of ventricular dilatation and the onset of heart failure, the role of acute physiologically increased retinoids in the infarction zone is unknown to date. To reveal the role of local retinoids in the MI zone is the central aim of this study. Using human cell culture and co-culture models for hypoxia as well as various assays systems, lentivirus-based transgene expression, in silico molecular docking studies, and an MI model in rats, we analysed the impact of the retinoid all-trans retinoic acid (ATRA) on cell signalling, cell viability, tissue survival, heart function, and MI-induced death in rats. Based on our results, ATRA-mediated signalling does aggravate the MI phenotype (e.g. 2.5-fold increased mortality compared to control), whereas 5'-methoxyleoligin (5ML), a new agent which interferes with ATRA-signalling rescues the ATRA-dependent phenotype. On the molecular level, ATRA signalling causes induction of TXNIP, a potent inhibitor of the physiological antioxidant thioredoxin (TRX1) and sensitizes cells to necrotic cell death upon hypoxia. 5ML-mediated prevention of ATRA effects were shown to be based on the inhibition of cellular ATRA uptake by interference with the cholesterol (and retinol) binding motif of the transmembrane protein STRA6. 5ML-mediated inhibition of ATRA uptake led to a strong reduction of ATRA-dependent gene expression, reduced ROS formation, and protection from necrotic cell death. As 5ML exerted a cardioprotective effect, also independent of its inhibition of cellular ATRA uptake, the agent likely has another cardioprotective property, which may rely on the induction of TRX1 activity. In summary, this is the first study to show i) that local retinoids in the early MI zone may worsen disease outcome, ii) that inhibition of endothelial retinoid uptake using 5ML may constitute a novel treatment strategy, and iii) that targeting endothelial and myocardial retinoid uptake (e.g. via STRA6 inhibition) may constitute a novel treatment target in acute MI.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Retinoides/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Humanos , Lignanos/farmacología , Masculino , Miocardio/metabolismo , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
2.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561491

RESUMEN

Central processes in the pathogenesis of TAV- (tricuspid aortic valve) and BAV- (bicuspid aortic valve) associated ascending thoracic aortic aneurysm (ATAA) development are still unknown. To gain new insights, we have collected aortic tissue and isolated smooth muscle cells of aneurysmal tissue and subjected them to in situ and in vitro analyses. We analyzed aortic tissue from 78 patients (31 controls, 28 TAV-ATAAs, and 19 BAV-ATAAs) and established 30 primary smooth muscle cell cultures. Analyses included histochemistry, immuno-, auto-fluorescence-based image analyses, and cellular analyses including smooth muscle cell contraction studies. With regard to TAV associated aneurysms, we observed a strong impairment of the vascular wall, which appears on different levels-structure and dimension of the layers (reduced media thickness, increased intima thickness, atherosclerotic changes, degeneration of aortic media, decrease of collagen, and increase of elastic fiber free area) as well as on the cellular level (accumulation of fibroblasts/myofibroblasts, and increase in the number of smooth muscle cells with a reduced alpha smooth muscle actin (α-SM actin) content per cell). The pathological changes in the aortic wall of BAV patients were much less pronounced-apart from an increased expression of osteopontin (OPN) in the vascular wall which stem from smooth muscle cells, we observed a trend towards increased calcification of the aortic wall (increase significantly associated with age). These observations provide strong evidence for different pathological processes and different disease mechanisms to occur in BAV- and TAV-associated aneurysms.


Asunto(s)
Aneurisma de la Aorta Torácica/etiología , Aneurisma de la Aorta Torácica/metabolismo , Válvula Aórtica/anomalías , Enfermedades de las Válvulas Cardíacas/metabolismo , Enfermedades de las Válvulas Cardíacas/patología , Osteopontina/metabolismo , Válvula Tricúspide/metabolismo , Válvula Tricúspide/patología , Actinas/metabolismo , Adulto , Anciano , Aneurisma de la Aorta Torácica/patología , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Enfermedad de la Válvula Aórtica Bicúspide , Calcinosis , Femenino , Fibroblastos/metabolismo , Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Osteopontina/genética
3.
PLoS One ; 14(3): e0213794, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30883576

RESUMEN

Pathological impairment of elastic fiber and other extracellular matrix (ECM) components are described for the aortic media of ascending thoracic aortic aneurysms (aTAA) but the exact pathological impairment of the structure and its degree still needs further investigations. To evaluate the quantity and quality of elastic fiber sheets and other ECM structures (e.g. collagen), cells were removed from different types of aneurysmal tissues (tricuspid aortic valve [TAV] associated-, bicuspid aortic valve [BAV] associated-aneurysmal tissue and acute aortic dissections [AAD]) using 2.5% sodium hydroxide (NaOH) and compared to decellularized control aortic tissue. Likewise, native tissue has been analysed. To evaluate the 2D- (histological evaluation, fluorescence- and auto-fluorescence based staining methods) and the 3D structure (scanning electron microscopic [SEM] examination) of the medial layer we first analysed for a successful decellularization. After proving for successful decellularization, we quantified the amount of elastic fiber sheets, elastin and other ECM components including collagen. Aside from clearly visible focal elastic fiber loss in TAV-aTAA tissue, decellularization resulted in reduction of elastic fiber auto-fluorescence properties, which is perhaps an indication from a disease-related qualitative impairment of elastic fibers, visible only after contact with the alkaline solution. Likewise, the loss of collagen amount in BAV-aTAA and TAV-aTAA tissue (compared to non-decellularized tissue) after contact with NaOH indicates a prior disease-associated impairment of collagen. Although the amount of ECM was not changed in type A dissection tissue, detailed electron microscopic evaluation revealed changes in ECM quality, which worsened after contact with alkaline solution but were not visible after histological analyses. Apart from the improved observation of the samples using electron microscopy, contact of aneurysmal and dissected tissue with the alkaline decellularization solution revealed potential disease related changes in ECM quality which can partly be connected to already published data, but have to be proven by further studies.


Asunto(s)
Aneurisma de la Aorta/patología , Disección Aórtica/patología , Matriz Extracelular/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Andamios del Tejido , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA