Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sci Adv ; 9(46): eadi5921, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976356

RESUMEN

Aberrant activation of Ras/Raf/mitogen-activated protein kinase (MAPK) signaling is frequently linked to metastatic prostate cancer (PCa); therefore, the characterization of modulators of this pathway is critical for defining therapeutic vulnerabilities for metastatic PCa. The lysine methyltransferase SET and MYND domain 3 (SMYD3) methylates MAPK kinase kinase 2 (MAP3K2) in some cancers, causing enhanced activation of MAPK signaling. In PCa, SMYD3 is frequently overexpressed and associated with disease severity; however, its molecular function in promoting tumorigenesis has not been defined. We demonstrate that SMYD3 critically regulates tumor-associated phenotypes via its methyltransferase activity in PCa cells and mouse xenograft models. SMYD3-dependent methylation of MAP3K2 promotes epithelial-mesenchymal transition associated behaviors by altering the abundance of the intermediate filament vimentin. Furthermore, activation of the SMYD3-MAP3K2 signaling axis supports a positive feedback loop continually promoting high levels of SMYD3. Our data provide insight into signaling pathways involved in metastatic PCa and enhance understanding of mechanistic functions for SMYD3 to reveal potential therapeutic opportunities for PCa.


Asunto(s)
Neoplasias de la Próstata , Masculino , Ratones , Animales , Humanos , Neoplasias de la Próstata/genética , Transducción de Señal , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Metiltransferasas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , MAP Quinasa Quinasa Quinasa 2/genética , MAP Quinasa Quinasa Quinasa 2/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
2.
Mol Biol Cell ; 34(1): ar6, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36416860

RESUMEN

Set1 is an H3K4 methyltransferase that comprises the catalytic subunit of the COMPASS complex and has been implicated in transcription, DNA repair, cell cycle control, and numerous other genomic functions. Set1 also promotes proper telomere maintenance, as cells lacking Set1 have short telomeres and disrupted subtelomeric gene repression; however, the precise role for Set1 in these processes has not been fully defined. In this study, we have tested mutants of Set1 and the COMPASS complex that differentially alter H3K4 methylation status, and we have attempted to separate catalytic and noncatalytic functions of Set1. Our data reveal that Set1-dependent subtelomeric gene repression relies on its catalytic activity toward H3K4, whereas telomere length is regulated by Set1 catalytic activity but likely independent of the H3K4 substrate. Furthermore, we uncover a role for Set1 in calibrating the abundance of critical telomere maintenance proteins, including components of the telomerase holoenzyme and members of the telomere capping CST (Cdc13-Stn1-Ten1) complex, through both transcriptional and posttranscriptional pathways. Altogether, our data provide new insights into the H3K4 methylation-dependent and -independent roles for Set1 in telomere maintenance in yeast and shed light on possible roles for Set1-related methyltransferases in other systems.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Metilación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
3.
Commun Biol ; 4(1): 147, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514864

RESUMEN

Primary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation.


Asunto(s)
Células Epiteliales/fisiología , Placa Neural/embriología , Tubo Neural/embriología , Neurulación , Prosencéfalo/embriología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Movimiento Celular , Forma de la Célula , Células Epiteliales/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Morfogénesis , Placa Neural/metabolismo , Tubo Neural/metabolismo , Defectos del Tubo Neural/embriología , Prosencéfalo/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Imagen de Lapso de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
4.
Life Sci Alliance ; 4(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34625508

RESUMEN

The yeast chromatin protein Set4 is a member of the Set3-subfamily of SET domain proteins which play critical roles in the regulation of gene expression in diverse developmental and environmental contexts. We previously reported that Set4 promotes survival during oxidative stress and regulates expression of stress response genes via stress-dependent chromatin localization. In this study, global gene expression analysis and investigation of histone modification status identified a role for Set4 in maintaining gene repressive mechanisms within yeast subtelomeres under both normal and stress conditions. We show that Set4 works in a partially overlapping pathway to the SIR complex and the histone deacetylase Rpd3 to maintain proper levels of histone acetylation and expression of stress response genes encoded in subtelomeres. This role for Set4 is particularly critical for cells under hypoxic conditions, where the loss of Set4 decreases cell fitness and cell wall integrity. These findings uncover a new regulator of subtelomeric chromatin that is key to stress defense pathways and demonstrate a function for Set4 in regulating repressive, heterochromatin-like environments.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/metabolismo , Estrés Oxidativo/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Telómero/metabolismo , Acetilación , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Silenciador del Gen , Código de Histonas/genética , Histonas/metabolismo , Microorganismos Modificados Genéticamente/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA