Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39282263

RESUMEN

Africa remains significantly underrepresented in high-resolution Human Leukocyte Antigen (HLA) data, despite being one of the most genetically diverse regions in the world. This critical gap in genetic information poses a substantial barrier to HLA-based research on the continent. In this study, Class I HLA data from Eastern and Southern African populations were analysed to assess genetic diversity across the region. We examined allele and haplotype frequency distributions, deviations from Hardy-Weinberg Equilibrium (HWE), linkage disequilibrium (LD), and conducted neutrality tests of homozygosity across various populations. Additionally, the African HLA data were compared to those of Caucasian and African American populations using the Jaccard index and multidimensional scaling (MDS) methods. The study revealed that South African populations exhibited 50.4% more genetic diversity within the Class I HLA region compared to other African populations. Zambia showed an estimated 36.5% genetic diversity, with Kenya, Rwanda and Uganda showing 35.7%, 34.2%, and 31.1%, respectively. Furthermore, an analysis of in-country diversity among different tribes indicated an average Class I HLA diversity of 25.7% in Kenya, 17% in Rwanda, 2.8% in South Africa, 13.6% in Uganda, and 6.5% in Zambia. The study also highlighted the genetic distinctness of Caucasian and African American populations compared to African populations. Notably, the differential frequencies of disease-promoting and disease-preventing HLA alleles across these populations emphasize the urgent need to generate high-quality HLA data for all regions of Africa and its major ethnic groups. Such efforts will be crucial in enhancing healthcare outcomes across the continent.

2.
Front Immunol ; 14: 1291048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38343437

RESUMEN

Background: Understanding how HIV affects SARS-CoV-2 immunity is crucial for managing COVID-19 in sub-Saharan populations due to frequent coinfections. Our previous research showed that unsuppressed HIV is associated with weaker immune responses to SARS-CoV-2, but the underlying mechanisms are unclear. We investigated how pre-existing T cell immunity against an endemic human coronavirus HCoV-NL63 impacts SARS-CoV-2 T cell responses in people living with HIV (PLWH) compared to uninfected individuals, and how HIV-related T cell dysfunction influences responses to SARS-CoV-2 variants. Methods: We used flow cytometry to measure T cell responses following PBMC stimulation with peptide pools representing beta, delta, wild-type, and HCoV-NL63 spike proteins. Luminex bead assay was used to measure circulating plasma chemokine and cytokine levels. ELISA and MSD V-PLEX COVID-19 Serology and ACE2 Neutralization assays were used to measure humoral responses. Results: Regardless of HIV status, we found a strong positive correlation between responses to HCoV-NL63 and SARS-CoV-2. However, PLWH exhibited weaker CD4+ T cell responses to both HCoV-NL63 and SARS-CoV-2 than HIV-uninfected individuals. PLWH also had higher proportions of functionally exhausted (PD-1high) CD4+ T cells producing fewer proinflammatory cytokines (IFNγ and TNFα) and had elevated plasma IL-2 and IL-12(p70) levels compared to HIV-uninfected individuals. HIV status didn't significantly affect IgG antibody levels against SARS-CoV-2 antigens or ACE2 binding inhibition activity. Conclusion: Our results indicate that the decrease in SARS-CoV-2 specific T cell responses in PLWH may be attributable to reduced frequencies of pre-existing cross-reactive responses. However, HIV infection minimally affected the quality and magnitude of humoral responses, and this could explain why the risk of severe COVID-19 in PLWH is highly heterogeneous.


Asunto(s)
COVID-19 , Coronavirus Humano NL63 , Infecciones por VIH , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Infecciones por VIH/epidemiología , Leucocitos Mononucleares , Linfocitos T , Citocinas
3.
Front Immunol ; 11: 590780, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193428

RESUMEN

Following the discovery of HIV as a causative agent of AIDS, the expectation was to rapidly develop a vaccine; but thirty years later, we still do not have a licensed vaccine. Progress has been hindered by the extensive genetic variability of HIV and our limited understanding of immune responses required to protect against HIV acquisition. Nonetheless, valuable knowledge accrued from numerous basic and translational science research studies and vaccine trials has provided insight into the structural biology of the virus, immunogen design and novel vaccine delivery systems that will likely constitute an effective vaccine. Furthermore, stakeholders now appreciate the daunting scientific challenges of developing an effective HIV vaccine, hence the increased advocacy for collaborative efforts among academic research scientists, governments, pharmaceutical industry, philanthropy, and regulatory entities. In this review, we highlight the history of HIV vaccine development efforts, highlighting major challenges and future directions.


Asunto(s)
Vacunas contra el SIDA/historia , Vacunas contra el SIDA/uso terapéutico , Animales , Anticuerpos Neutralizantes/inmunología , Desarrollo de Medicamentos , VIH/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Linfocitos T/inmunología
4.
Toxicol Rep ; 5: 813-818, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30128298

RESUMEN

BACKGROUND: Medicinal plants are used by a large proportion of the global population as complementary and alternative medicines. However, little is known about their toxicity. G. africana has been used to treat wounds, coughs and skin diseases and is used in cosmetic formulations such as lotions and shampoos. METHODS: The acute oral and dermal toxicity potential of G. africana was analyzed after a single administration of 300 and 2000 mg/kgbw for acute oral toxicity and 2000 mg/kgbw for acute dermal toxicity. Female Sprague-Dawley rats were used for the acute oral toxicity study whereas both male and female Sprague-Dawley rats were used for the acute dermal toxicity study. In the Episkin skin irritation test, the irritation potential of G. africana (concentrate) and G. africana (in-use dilution) extracts were assessed using the Episkin reconstituted human epidermis. In the dermal sensitization study, female CBA/Ca mice were treated with G. africana concentrations of 50, 100 and 200 mg/ml respectively. The vehicle of choice was dimethylformamide which acted as a control. RESULTS: The results of the acute oral and dermal toxicity studies revealed that the median lethal dosage (LD50) for G. africana extract in Sprague-Dawley rats was considered to exceed 2000 mg/kgbw. In the irritation test, the G. africana (concentrate) and G. africana (in-use dilution) extracts were non-irritant on the Episkin reconstituted human epidermis. In the dermal sensitization study, the stimulation index (SI) values for the mice treated with the G. africana extract at concentrations of 50, 100 and 200 mg/ml/kgbw, when compared to the control group, were 1.3, 0.9 and 1.3 respectively. The open application of the extract at the various concentrations did not result in a SI of ≥ 3 in any group. Hence, it did not elicit a hypersensitivity response. CONCLUSION: These findings demonstrate that the acute toxicity profile for G. africana is acceptable and can subsequently be used for single use in the pharmaceutical and cosmetic industries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA