Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34561304

RESUMEN

Plant innate immunity is activated upon perception of invasion pattern molecules by plant cell-surface immune receptors. Several bacteria of the genera Pseudomonas and Burkholderia produce rhamnolipids (RLs) from l-rhamnose and (R)-3-hydroxyalkanoate precursors (HAAs). RL and HAA secretion is required to modulate bacterial surface motility, biofilm development, and thus successful colonization of hosts. Here, we show that the lipidic secretome from the opportunistic pathogen Pseudomonas aeruginosa, mainly comprising RLs and HAAs, stimulates Arabidopsis immunity. We demonstrate that HAAs are sensed by the bulb-type lectin receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION/S-DOMAIN-1-29 (LORE/SD1-29), which also mediates medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) perception, in the plant Arabidopsis thaliana HAA sensing induces canonical immune signaling and local resistance to plant pathogenic Pseudomonas infection. By contrast, RLs trigger an atypical immune response and resistance to Pseudomonas infection independent of LORE. Thus, the glycosyl moieties of RLs, although abolishing sensing by LORE, do not impair their ability to trigger plant defense. Moreover, our results show that the immune response triggered by RLs is affected by the sphingolipid composition of the plasma membrane. In conclusion, RLs and their precursors released by bacteria can both be perceived by plants but through distinct mechanisms.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Glucolípidos/metabolismo , Inmunidad de la Planta/fisiología , Pseudomonas syringae/patogenicidad , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Señalización del Calcio , Resistencia a la Enfermedad/inmunología , Glucolípidos/química , Interacciones Huésped-Patógeno/fisiología , Inmunidad Innata , Fosforilación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Pseudomonas syringae/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
2.
Appl Microbiol Biotechnol ; 103(3): 1189-1215, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30603850

RESUMEN

Overuse of broad-spectrum antibiotics to control human and plant pathogens greatly accelerated the development of antibiotic resistance among bacteria and fungi. Therefore, usage of new approaches is necessary to control outbreaks of phytopathogenic diseases as well as multidrug-resistant human pathogens. Many of the polyketides (PKs) and lipopetides (LPs) produced by Bacillus and Paenibacillus species have been described as antimicrobial agents that can be potentially applied as sustainable bio-organic products in medicine against human pathogens and in agriculture for controlling plant pathogens. The present review provides a general information about the classification and biochemical structure of known Bacillus- and Paenibacillus-secreted PKs, as well as ribosomally and nonribosomally synthesized peptides, their functional features, gene clusters involved in their production, and the mode of action of these metabolites.


Asunto(s)
Antiinfecciosos/farmacología , Bacillus/metabolismo , Bacteriocinas/farmacología , Agentes de Control Biológico/farmacología , Lipopéptidos/farmacología , Paenibacillus/metabolismo , Enfermedades de las Plantas/prevención & control , Policétidos/farmacología , Antiinfecciosos/metabolismo , Bacillus/genética , Bacteriocinas/metabolismo , Agentes de Control Biológico/metabolismo , Farmacorresistencia Bacteriana Múltiple , Humanos , Lipopéptidos/metabolismo , Paenibacillus/genética , Plantas , Policétidos/metabolismo
3.
Water Environ Res ; 84(8): 626-34, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22953447

RESUMEN

This study examined the biodegradation of phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor (ICB), operated in a repeated batch recycling mode. The steady biodegradation rate of 23.7 mg/g/h, over a wide range of the initial phenol concentrations up to 1400 mg/L in the ICB, indicated an increased tolerance limit of the Kissiris-immobilized cells towards phenol. Both Haldane and Luong substrate inhibition models were used to describe biodegradation kinetic of free cells system. The Haldane equation gave the following values for the biokinetic parameters: micro(max) = 0.36 h(-1), Ks = 40.48 mg/L, and Ki = 181.9 mg/L. However, according to the Luong model, these parameters were micromax) = 0.23 h(-1), Ks = 24.8 mg/L, Sm = 1018 mg/L, and n = 1.3. By following appropriate operational conditions and use of the ICB, it was found to be possible to extend the efficiency of the highly porous structure of the siliceous mineral Kissiris in cell immobilization. This holds significant promise for pollutant biodegradation issues.


Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Cupriavidus necator/metabolismo , Fenol/metabolismo , Contaminantes Químicos del Agua/metabolismo , Aclimatación , Células Inmovilizadas , Microscopía Acústica , Fenol/química
4.
Water Res ; 216: 118328, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35364354

RESUMEN

Legionella pneumophila is a natural inhabitant of water systems. From there, it can be transmitted to humans by aerosolization resulting in severe pneumonia. Most large outbreaks are caused by cooling towers colonized with L. pneumophila. The resident microbiota of the cooling tower is a key determinant for the colonization and growth of L. pneumophila. In our preceding study, the genus Pseudomonas correlated negatively with the presence of L. pneumophila in cooling towers, but it was not clear which species was responsible. Therefore, we identified the Pseudomonas species inhabiting 14 cooling towers using a Pseudomonas-specific 16S rRNA amplicon sequencing strategy. We found that cooling towers that are free of L. pneumophila contained a high relative abundance of members from the Pseudomonas alcaliphila/oleovorans phylogenetic cluster. P. alcaliphila JCM 10630 inhibited the growth of L. pneumophila on agar plates. Analysis of the P. alcaliphila genome revealed the presence of a gene cluster predicted to produce toxoflavin. L. pneumophila growth was inhibited by pure toxoflavin and by extracts from P. alcaliphila culture found to contain toxoflavin by liquid chromatography coupled with mass spectrometry. In addition, toxoflavin inhibits the growth of Vermameoba vermiformis, a host cell of L. pneumophila. Our study indicates that P. alcaliphila may be important to restrict growth of L. pneumophila in water systems through the production of toxoflavin. A sufficiently high concentration of toxoflavin is likely not achieved in the bulk water but might have a local inhibitory effect such as near or in biofilms.


Asunto(s)
Legionella pneumophila , Legionella , Humanos , Legionella/genética , Legionella pneumophila/genética , Filogenia , Pseudomonas/genética , Pirimidinonas , ARN Ribosómico 16S/genética , Triazinas , Agua , Microbiología del Agua
5.
Microbiologyopen ; 10(3): e1202, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34180603

RESUMEN

Antibiotics are sprayed on apple and pear orchards to control, among other pathogens, the bacterium Erwinia amylovora, the causative agent of fire blight. As with many other pathogens, we observe the emergence of antibiotic-resistant strains of E. amylovora. Consequently, growers are looking for alternative solutions to combat fire blight. To find alternatives to antibiotics against this pathogen, we have previously isolated three bacterial strains with antagonistic and extracellular activity against E. amylovora, both in vitro and in planta, corresponding to three different bacterial genera: Here, we identified the inhibitory mode of action of each of the three isolates against E. amylovora. Isolate Bacillus amyloliquefaciens subsp. plantarum (now B. velezensis) FL50S produces several secondary metabolites including surfactins, iturins, and fengycins. Specifically, we identified oxydifficidin as the most active against E. amylovora S435. Pseudomonas poae FL10F produces an active extracellular compound against E. amylovora S435 that can be attributed to white-line-inducing principle (WLIP), a cyclic lipopeptide belonging to the viscosin subfamily (massetolide E, F, L, or viscosin). Pantoea agglomerans NY60 has a direct cell-to-cell antagonistic effect against E. amylovora S435. By screening mutants of this strain generated by random transposon insertion with decreased antagonist activity against strain S435, we identified several defective transposants. Of particular interest was a mutant in a gene coding for a Major Facilitator Superfamily (MFS) transporter corresponding to a transmembrane protein predicted to be involved in the extracytoplasmic localization of griseoluteic acid, an intermediate in the biosynthesis of the broad-spectrum phenazine antibiotic D-alanylgriseoluteic acid.


Asunto(s)
Antibacterianos/farmacología , Bacillus/metabolismo , Erwinia amylovora/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Alanina/análogos & derivados , Alanina/metabolismo , Alanina/farmacología , Antibacterianos/metabolismo , Bacillus/química , Bacillus/genética , Erwinia amylovora/fisiología , Lipopéptidos/metabolismo , Lipopéptidos/farmacología , Malus/microbiología , Fenazinas/metabolismo , Fenazinas/farmacología , Pyrus/microbiología
6.
Front Microbiol ; 7: 1215, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27540372

RESUMEN

Quorum sensing (QS) is a cell density-dependent mechanism which enables a population of bacteria to coordinate cooperative behaviors in response to the accumulation of self-produced autoinducer signals in their local environment. An emerging framework is that the adaptive significance of QS in the regulation of production of costly extracellular metabolites ("public goods") is to maintain the homeostasis of cooperation. We investigated this model using the phytopathogenic bacterium Burkholderia glumae, which we have previously demonstrated uses QS to regulate the production of rhamnolipids, extracellular surface-active glycolipids promoting the social behavior called "swarming motility." Using mass spectrometric quantification and chromosomal lux-based gene expression, we made the unexpected finding that when unrestricted nutrient resources are provided, production of rhamnolipids is carried out completely independently of QS regulation. This is a unique observation among known QS-controlled factors in bacteria. On the other hand, under nutrient-limited conditions, QS then becomes the main regulating mechanism, significantly enhancing the specific rhamnolipids yield. Accordingly, decreasing nutrient concentrations amplifies rhamnolipid biosynthesis gene expression, revealing a system where QS-dependent regulation is specifically triggered by the growth rate of the population, rather than by its cell density. Furthermore, a gradual increase in QS signal specific concentration upon decrease of specific growth rate suggests a reduction in quorum threshold, which reflects an increase in cellular demand for production of QS-dependent target gene product at low density populations. Integration of growth rate with QS as a decision-making mechanism for biosynthesis of costly metabolites, such as rhamnolipids, could serve to assess the demand and timing for expanding the carrying capacity of a population through spatial expansion mechanisms, such as swarming motility, thus promoting the chances of survival, even if the cell density might not be high enough for an otherwise efficient production of rhamnolipids. In conclusion, we propose that the adaptive significance of growth rate-dependent functionality of QS in biosynthesis of costly public goods lies within providing a regulatory mechanism for selecting the optimal trade-off between survival and efficiency.

7.
mSphere ; 1(1)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303689

RESUMEN

Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections.

8.
PLoS One ; 10(6): e0128509, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26047513

RESUMEN

Burkholderia glumae is a plant pathogenic bacterium that uses an acyl-homoserine lactone-mediated quorum sensing system to regulate protein secretion, oxalate production and major virulence determinants such as toxoflavin and flagella. B. glumae also releases surface-active rhamnolipids. In Pseudomonas aeruginosa and Burkholderia thailandensis, rhamnolipids, along with flagella, are required for the social behavior called swarming motility. In the present study, we demonstrate that quorum sensing positively regulates the production of rhamnolipids in B. glumae and that rhamnolipids are necessary for swarming motility also in this species. We show that a rhlA- mutant, which is unable to produce rhamnolipids, loses its ability to swarm, and that this can be complemented by providing exogenous rhamnolipids. Impaired rhamnolipid production in a quorum sensing-deficient B. glumae mutant is the main factor responsible for its defective swarming motility behaviour.


Asunto(s)
Burkholderia/fisiología , Glucolípidos/metabolismo , Percepción de Quorum , Distribución Animal , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia/genética , Glucolípidos/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA