Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Nat Chem Biol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302607

RESUMEN

The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.

2.
Proc Natl Acad Sci U S A ; 120(30): e2305495120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459532

RESUMEN

Marine algae are responsible for half of the world's primary productivity, but this critical carbon sink is often constrained by insufficient iron. One species of marine algae, Dunaliella tertiolecta, is remarkable for its ability to maintain photosynthesis and thrive in low-iron environments. A related species, Dunaliella salina Bardawil, shares this attribute but is an extremophile found in hypersaline environments. To elucidate how algae manage their iron requirements, we produced high-quality genome assemblies and transcriptomes for both species to serve as a foundation for a comparative multiomics analysis. We identified a host of iron-uptake proteins in both species, including a massive expansion of transferrins and a unique family of siderophore-iron-uptake proteins. Complementing these multiple iron-uptake routes, ferredoxin functions as a large iron reservoir that can be released by induction of flavodoxin. Proteomic analysis revealed reduced investment in the photosynthetic apparatus coupled with remodeling of antenna proteins by dramatic iron-deficiency induction of TIDI1, which is closely related but identifiably distinct from the chlorophyll binding protein, LHCA3. These combinatorial iron scavenging and sparing strategies make Dunaliella unique among photosynthetic organisms.


Asunto(s)
Chlorophyceae , Extremófilos , Hierro/metabolismo , Multiómica , Proteómica , Fotosíntesis , Proteínas/metabolismo
3.
J Proteome Res ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236019

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with a complex etiology influenced by confounding factors such as genetic polymorphisms, age, sex, and race. Traditionally, AD research has not prioritized these influences, resulting in dramatically skewed cohorts such as three times the number of Apolipoprotein E (APOE) ε4-allele carriers in AD relative to healthy cohorts. Thus, the resulting molecular changes in AD have previously been complicated by the influence of apolipoprotein E disparities. To explore how apolipoprotein E polymorphism influences AD progression, 62 post-mortem patients consisting of 33 AD and 29 controls (Ctrl) were studied to balance the number of ε4-allele carriers and facilitate a molecular comparison of the apolipoprotein E genotype. Lipid and protein perturbations were assessed across AD diagnosed brains compared to Ctrl brains, ε4 allele carriers (APOE4+ for those carrying 1 or 2 ε4s and APOE4- for non-ε4 carriers), and differences in ε3ε3 and ε3ε4 Ctrl brains across two brain regions (frontal cortex (FCX) and cerebellum (CBM)). The region-specific influences of apolipoprotein E on AD mechanisms showcased mitochondrial dysfunction and cell proteostasis at the core of AD pathophysiology in the post-mortem brains, indicating these two processes may be influenced by genotypic differences and brain morphology.

4.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383396

RESUMEN

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Asunto(s)
Ácidos Grasos Omega-3 , Islotes Pancreáticos , N-Glicosil Hidrolasas , Ratones , Animales , Humanos , Islotes Pancreáticos/metabolismo , Muerte Celular , Citocinas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Fosfatidilcolinas/metabolismo
5.
Nature ; 560(7716): 49-54, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013118

RESUMEN

As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.


Asunto(s)
Carbono/metabolismo , Congelación , Metagenoma/genética , Hielos Perennes/química , Hielos Perennes/microbiología , Microbiología del Suelo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Fermentación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/metabolismo , Calentamiento Global , Metano/metabolismo , Polisacáridos/metabolismo , Suecia , Xilosa/metabolismo
6.
J Proteome Res ; 22(3): 942-950, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36626706

RESUMEN

Prostate cancer (PCa) is the second leading cause of male cancer-related deaths in the United States. The pre-mature forms of prostate-specific antigen (PSA), proPSA, were shown to be associated with PCa. However, there is a technical challenge in the development of antibody-based immunoassays for specific recognition of each individual proPSA isoform. Herein, we report the development of highly specific, antibody-free, targeted mass spectrometry assays for simultaneous quantification of [-2], [-4], [-5], and [-7] proPSA isoforms in voided urine. The newly developed proPSA assays capitalize on Lys-C digestion to generate surrogate peptides with appropriate length (9-16 amino acids) along with long-gradient liquid chromatography separation. The assay utility of these isoform markers was evaluated in a cohort of 30 well-established clinical urine samples for distinguishing PCa patients from healthy controls. Under the 95% confidence interval, the combination of [-2] and [-4] proPSA isoforms yields the area under curve (AUC) of 0.86, and the AUC value for the combined all four isoforms was calculated to be 0.85. We have further verified [-2]proPSA, the dominant isoform, in an independent cohort of 34 clinical urine samples. Validation of proPSA isoforms in large-scale cohorts is needed to demonstrate their potential clinical utility.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico , Inmunoensayo , Isoformas de Proteínas , Espectrometría de Masas
7.
Metab Eng ; 78: 72-83, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37201565

RESUMEN

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Asunto(s)
Lignina , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Lignina/metabolismo
8.
Metab Eng ; 76: 193-203, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796578

RESUMEN

Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional ß-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Mutagénesis , Ácidos Grasos
9.
New Phytol ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062903

RESUMEN

Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant-mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza-assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta-transcriptomic, biogeochemical, and X-ray fluorescence imaging analyses were applied to investigate early-stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis-related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade-offs between Fe-enhanced plant growth and symbiotic performance. However, the extent of this trade-off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe-related functions than single-EMF species. This subsequently triggered various Fe-dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe-induced effects on symbiotic partners.

10.
Plant Cell Environ ; 46(12): 3919-3932, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37675977

RESUMEN

Traditionally, fine roots were grouped using arbitrary size categories, rarely capturing the heterogeneity in physiology, morphology and functionality among different fine root orders. Fine roots with different functional roles are rarely separated in microbiome-focused studies and may result in confounding microbial signals and host-filtering across different root microbiome compartments. Using a 26-year-old common garden, we sampled fine roots from four temperate tree species that varied in root morphology and sorted them into absorptive and transportive fine roots. The rhizoplane and rhizosphere were characterized using 16S rRNA gene and internal transcribed spacer region amplicon sequencing and shotgun metagenomics for the rhizoplane to identify potential microbial functions. Fine roots were subject to metabolomics to spatially characterize resource availability. Both fungi and bacteria differed according to root functional type. We observed additional differences between the bacterial rhizoplane and rhizosphere compartments for absorptive but not transportive fine roots. Rhizoplane bacteria, as well as the root metabolome and potential microbial functions, differed between absorptive and transportive fine roots, but not the rhizosphere bacteria. Functional differences were driven by sugar transport, peptidases and urea transport. Our data highlights the importance of root function when examining root-microbial relationships, emphasizing different host selective pressures imparted on different root microbiome compartments.


Asunto(s)
Bacterias , Raíces de Plantas , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Rizosfera , Hongos , Microbiología del Suelo
11.
J Proteome Res ; 21(8): 2023-2035, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793793

RESUMEN

Metaproteomics has been increasingly utilized for high-throughput characterization of proteins in complex environments and has been demonstrated to provide insights into microbial composition and functional roles. However, significant challenges remain in metaproteomic data analysis, including creation of a sample-specific protein sequence database. A well-matched database is a requirement for successful metaproteomics analysis, and the accuracy and sensitivity of PSM identification algorithms suffer when the database is incomplete or contains extraneous sequences. When matched DNA sequencing data of the sample is unavailable or incomplete, creating the proteome database that accurately represents the organisms in the sample is a challenge. Here, we leverage a de novo peptide sequencing approach to identify the sample composition directly from metaproteomic data. First, we created a deep learning model, Kaiko, to predict the peptide sequences from mass spectrometry data and trained it on 5 million peptide-spectrum matches from 55 phylogenetically diverse bacteria. After training, Kaiko successfully identified organisms from soil isolates and synthetic communities directly from proteomics data. Finally, we created a pipeline for metaproteome database generation using Kaiko. We tested the pipeline on native soils collected in Kansas, showing that the de novo sequencing model can be employed as an alternative and complementary method to construct the sample-specific protein database instead of relying on (un)matched metagenomes. Our pipeline identified all highly abundant taxa from 16S rRNA sequencing of the soil samples and uncovered several additional species which were strongly represented only in proteomic data.


Asunto(s)
Microbiota , Proteómica , Microbiota/genética , Péptidos/análisis , Péptidos/genética , Proteoma/genética , Proteómica/métodos , ARN Ribosómico 16S/genética , Suelo
12.
Proc Natl Acad Sci U S A ; 116(6): 2374-2383, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659148

RESUMEN

The unicellular green alga Chlamydomonas reinhardtii displays metabolic flexibility in response to a changing environment. We analyzed expression patterns of its three genomes in cells grown under light-dark cycles. Nearly 85% of transcribed genes show differential expression, with different sets of transcripts being up-regulated over the course of the day to coordinate cellular growth before undergoing cell division. Parallel measurements of select metabolites and pigments, physiological parameters, and a subset of proteins allow us to infer metabolic events and to evaluate the impact of the transcriptome on the proteome. Among the findings are the observations that Chlamydomonas exhibits lower respiratory activity at night compared with the day; multiple fermentation pathways, some oxygen-sensitive, are expressed at night in aerated cultures; we propose that the ferredoxin, FDX9, is potentially the electron donor to hydrogenases. The light stress-responsive genes PSBS, LHCSR1, and LHCSR3 show an acute response to lights-on at dawn under abrupt dark-to-light transitions, while LHCSR3 genes also exhibit a later, second burst in expression in the middle of the day dependent on light intensity. Each response to light (acute and sustained) can be selectively activated under specific conditions. Our expression dataset, complemented with coexpression networks and metabolite profiling, should constitute an excellent resource for the algal and plant communities.


Asunto(s)
Chlamydomonas/genética , Chlamydomonas/metabolismo , Genómica , Metabolómica , Proteómica , División Celular , Replicación del ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Glucólisis , Metaboloma , Metabolómica/métodos , NAD/metabolismo , Oxidación-Reducción , Fotosíntesis/genética , Proteoma , Proteómica/métodos , Transducción de Señal , Transcriptoma
13.
Analyst ; 146(24): 7670-7681, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34806721

RESUMEN

The discovery of dirigent proteins (DPs) and their functions in plant phenol biochemistry was made over two decades ago with Forsythia × intermedia. Stereo-selective, DP-guided, monolignol-derived radical coupling in vitro was then reported to afford the optically active lignan, (+)-pinoresinol from coniferyl alcohol, provided one-electron oxidase/oxidant capacity was present. It later became evident that DPs have several distinct sub-families, presumably with different functions. Some known DPs require other essential enzymes/proteins (e.g. oxidases) for their functions. However, the lack of a fully sequenced genome for Forsythia × intermedia made it difficult to profile other components co-purified with the (+)-pinoresinol forming DP. Herein, we used an integrated bottom-up, top-down, and native mass spectrometry (MS) approach to de novo sequence the extracted proteins via adaptation of our initial report of DP solubilization and purification. Using publicly available transcriptome and genomic data from closely related species, we identified 14 proteins that were putatively associated with either DP function or the cell wall. Although their co-occurrence after extraction and chromatographic separation is suggestive for potential protein-protein interactions, none were found to form stable protein complexes with DPs in native MS under the specific experimental conditions we have explored. Interestingly, two new DP homologs were found and they formed hetero-trimers. Molecular dynamics simulations suggested that similar hetero-trimers were possible between Arabidopsis DP homologs with comparable sequence similarities. Nevertheless, our integrated mass spectrometry method development helped prepare for future investigations directed to the discovery of novel proteins and protein-protein interactions. These advantages can be highly beneficial for plant and microbial research where fully sequenced genomes may not be readily available.


Asunto(s)
Arabidopsis , Forsythia , Genoma , Humanos , Espectrometría de Masas , Proteínas de Plantas/genética
14.
Proc Natl Acad Sci U S A ; 115(5): E1012-E1021, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339515

RESUMEN

Convergent evolution dictates that diverse groups of viruses will target both similar and distinct host pathways to manipulate the immune response and improve infection. In this study, we sought to leverage this uneven viral antagonism to identify critical host factors that govern disease outcome. Utilizing a systems-based approach, we examined differential regulation of IFN-γ-dependent genes following infection with robust respiratory viruses including influenza viruses [A/influenza/Vietnam/1203/2004 (H5N1-VN1203) and A/influenza/California/04/2009 (H1N1-CA04)] and coronaviruses [severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV)]. Categorizing by function, we observed down-regulation of gene expression associated with antigen presentation following both H5N1-VN1203 and MERS-CoV infection. Further examination revealed global down-regulation of antigen-presentation gene expression, which was confirmed by proteomics for both H5N1-VN1203 and MERS-CoV infection. Importantly, epigenetic analysis suggested that DNA methylation, rather than histone modification, plays a crucial role in MERS-CoV-mediated antagonism of antigen-presentation gene expression; in contrast, H5N1-VN1203 likely utilizes a combination of epigenetic mechanisms to target antigen presentation. Together, the results indicate a common mechanism utilized by H5N1-VN1203 and MERS-CoV to modulate antigen presentation and the host adaptive immune response.


Asunto(s)
Presentación de Antígeno , Epigénesis Genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Animales , Variación Antigénica , Línea Celular , Chlorocebus aethiops , Metilación de ADN , Perros , Regulación hacia Abajo , Histonas/química , Humanos , Células de Riñón Canino Madin Darby , Complejo Mayor de Histocompatibilidad , Mutación , Sistemas de Lectura Abierta , Proteómica , Células Vero
15.
Proc Natl Acad Sci U S A ; 115(28): E6585-E6594, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941576

RESUMEN

Hydraulic fracturing is one of the industrial processes behind the surging natural gas output in the United States. This technology inadvertently creates an engineered microbial ecosystem thousands of meters below Earth's surface. Here, we used laboratory reactors to perform manipulations of persisting shale microbial communities that are currently not feasible in field scenarios. Metaproteomic and metabolite findings from the laboratory were then corroborated using regression-based modeling performed on metagenomic and metabolite data from more than 40 produced fluids from five hydraulically fractured shale wells. Collectively, our findings show that Halanaerobium, Geotoga, and Methanohalophilus strain abundances predict a significant fraction of nitrogen and carbon metabolites in the field. Our laboratory findings also exposed cryptic predatory, cooperative, and competitive interactions that impact microorganisms across fractured shales. Scaling these results from the laboratory to the field identified mechanisms underpinning biogeochemical reactions, yielding knowledge that can be harnessed to potentially increase energy yields and inform management practices in hydraulically fractured shales.


Asunto(s)
Bacterias/metabolismo , Fracking Hidráulico , Consorcios Microbianos/fisiología , Gas Natural/microbiología , Bacterias/clasificación , Estados Unidos
16.
Environ Microbiol ; 22(3): 1154-1166, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31876091

RESUMEN

Saprobic fungi, such as Aspergillus niger, grow as colonies consisting of a network of branching and fusing hyphae that are often considered to be relatively uniform entities in which nutrients can freely move through the hyphae. In nature, different parts of a colony are often exposed to different nutrients. We have investigated, using a multi-omics approach, adaptation of A. niger colonies to spatially separated and compositionally different plant biomass substrates. This demonstrated a high level of intra-colony differentiation, which closely matched the locally available substrate. The part of the colony exposed to pectin-rich sugar beet pulp and to xylan-rich wheat bran showed high pectinolytic and high xylanolytic transcript and protein levels respectively. This study therefore exemplifies the high ability of fungal colonies to differentiate and adapt to local conditions, ensuring efficient use of the available nutrients, rather than maintaining a uniform physiology throughout the colony.


Asunto(s)
Adaptación Fisiológica , Aspergillus niger/metabolismo , Carbono/metabolismo , Biomasa , Hifa/metabolismo , Pectinas/metabolismo
17.
Microb Cell Fact ; 19(1): 24, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024522

RESUMEN

BACKGROUND: Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS: The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION: This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism.


Asunto(s)
Diterpenos de Tipo Kaurano/metabolismo , Lignina/metabolismo , Ingeniería Metabólica , Ustilaginales/metabolismo , Animales , Proteínas de Plantas/metabolismo
18.
Mol Cell ; 48(5): 811-8, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23142082

RESUMEN

In Arabidopsis, RNA-dependent DNA methylation and transcriptional silencing involves three nuclear RNA polymerases that are biochemically undefined: the presumptive DNA-dependent RNA polymerases Pol IV and Pol V and the putative RNA-dependent RNA polymerase RDR2. Here we demonstrate their RNA polymerase activities in vitro. Unlike Pol II, Pols IV and V require an RNA primer, are insensitive to α-amanitin, and differ in their ability to displace the nontemplate DNA strand during transcription. Biogenesis of 24 nt small interfering RNAs (siRNAs), which guide cytosine methylation to corresponding sequences, requires both Pol IV and RDR2, which physically associate in vivo. Whereas Pol IV does not require RDR2 for activity, RDR2 is nonfunctional in the absence of associated Pol IV. These results suggest that the physical and mechanistic coupling of Pol IV and RDR2 results in the channeled synthesis of double-stranded precursors for 24 nt siRNA biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , Plantas Modificadas Genéticamente/enzimología , Interferencia de ARN , ARN Bicatenario/biosíntesis , ARN de Planta/biosíntesis , ARN Interferente Pequeño/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Alfa-Amanitina/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Unión Competitiva , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Mutación , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Unión Proteica , Interferencia de ARN/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/genética , Transcripción Genética
19.
Anal Chem ; 91(23): 15073-15080, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31659904

RESUMEN

Lipids have been recognized as key players in cell signaling and disease. Information on their location and distribution within a biological system, under varying conditions, is necessary to understand the contributions of different lipid species to an altered phenotype. Imaging mass spectrometry techniques, such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and matrix-assisted laser desorption/ionization (MALDI), are capable of revealing global lipid distributions in tissues in an untargeted fashion. However, to confidently identify the species present in a sample, orthogonal analyses like tandem MS (MS/MS) are often required. This can be accomplished by bulk sample analysis with liquid chromatography (LC)-MS/MS, which can provide confident lipid identifications, at the expense of losing location-specific information. Here, using planarian flatworms as a model system, we demonstrate that imaging gas cluster ion beam (GCIB)-ToF-SIMS has the unique capability to simultaneously detect, identify, and image lipid species with subcellular resolution in tissue sections. The parallel detection of both, intact lipids and their respective fragments, allows for unique identification of some species without the need of performing an additional orthogonal MS/MS analysis. This was accomplished by correlating intact lipid and associated fragment SIMS images. The lipid assignments, respective fragment identities, and locations gathered from ToF-SIMS data were confirmed via LC-MS/MS on lipid extracts and ultrahigh mass resolution MALDI-MS imaging. Together, these data show that the semidestructive nature of ToF-SIMS can be utilized advantageously to enable both confident molecular annotations and to determine the locations of species within a biological sample.


Asunto(s)
Lípidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa de Ion Secundario/métodos , Animales , Cromatografía Liquida , Humanos , Metabolismo de los Lípidos , Espectrometría de Masas en Tándem/métodos , Distribución Tisular
20.
Anal Chem ; 91(18): 11606-11613, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31418558

RESUMEN

Protein phosphorylation is a critical post-translational modification (PTM). Despite recent technological advances in reversed-phase liquid chromatography (RPLC)-mass spectrometry (MS)-based proteomics, comprehensive phosphoproteomic coverage in complex biological systems remains challenging, especially for hydrophilic phosphopeptides with enriched regions of serines, threonines, and tyrosines that often orchestrate critical biological functions. To address this issue, we developed a simple, easily implemented method to introduce a commonly used tandem mass tag (TMT) to increase peptide hydrophobicity, effectively enhancing RPLC-MS analysis of hydrophilic peptides. Different from conventional TMT labeling, this method capitalizes on using a nonprimary amine buffer and TMT labeling occurring before C18-based solid phase extraction. Through phosphoproteomic analyses of MCF7 cells, we have demonstrated that this method can greatly increase the number of identified hydrophilic phosphopeptides and improve MS detection signals. We applied this method to study the peptide QPSSSR, a very hydrophilic tryptic peptide located on the C-terminus of the G protein-coupled receptor (GPCR) CXCR3. Identification of QPSSSR has never been reported, and we were unable to detect it by traditional methods. We validated our TMT labeling strategy by comparative RPLC-MS analyses of both a hydrophilic QPSSSR peptide library as well as common phosphopeptides. We further confirmed the utility of this method by quantifying QPSSSR phosphorylation abundances in HEK 293 cells under different treatment conditions predicted to alter QPSSSR phosphorylation. We anticipate that this simple TMT labeling method can be broadly used not only for decoding GPCR phosphoproteome but also for effective RPLC-MS analysis of other highly hydrophilic analytes.


Asunto(s)
Sondas Moleculares/química , Fosfopéptidos/análisis , Secuencia de Aminoácidos , Cromatografía de Fase Inversa , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Células MCF-7 , Biblioteca de Péptidos , Fosfopéptidos/química , Fosforilación , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Succinimidas/química , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA