Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Infect Immun ; 88(8)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32393507

RESUMEN

The intracellular bacterial pathogen Salmonella is able to evade the immune system and persist within the host. In some cases, these persistent infections are asymptomatic for long periods and represent a significant public health hazard because the hosts are potential chronic carriers, yet the mechanisms that control persistence are incompletely understood. Using a mouse model of chronic typhoid fever combined with major histocompatibility complex (MHC) class II tetramers to interrogate endogenous, Salmonella-specific CD4+ helper T cells, we show that certain host microenvironments may favorably contribute to a pathogen's ability to persist in vivo We demonstrate that the environment in the hepatobiliary system may contribute to the persistence of Salmonella enterica subsp. enterica serovar Typhimurium through liver-resident immunoregulatory CD4+ helper T cells, alternatively activated macrophages, and impaired bactericidal activity. This contrasts with lymphoid organs, such as the spleen and mesenteric lymph nodes, where these same cells appear to have a greater capacity for bacterial killing, which may contribute to control of bacteria in these organs. We also found that, following an extended period of infection of more than 2 years, the liver appeared to be the only site that harbored Salmonella bacteria. This work establishes a potential role for nonlymphoid organ immunity in regulating chronic bacterial infections and provides further evidence for the hepatobiliary system as the site of chronic Salmonella infection.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Hígado/inmunología , Salmonelosis Animal/inmunología , Salmonella typhimurium/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Enfermedad Crónica , Técnicas de Cocultivo , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/inmunología , Vesícula Biliar/inmunología , Vesícula Biliar/microbiología , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/genética , Inmunidad Innata , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Hígado/microbiología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/microbiología , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Células RAW 264.7 , Salmonelosis Animal/genética , Salmonelosis Animal/microbiología , Salmonelosis Animal/patología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/patogenicidad , Análisis de la Célula Individual , Bazo/inmunología , Bazo/microbiología , Linfocitos T Colaboradores-Inductores/microbiología
2.
J Immunol ; 196(11): 4632-40, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27183598

RESUMEN

How the metabolic demand of parasitism affects immune-mediated resistance is poorly understood. Immunity against parasitic helminths requires M2 cells and IL-13, secreted by CD4(+) Th2 and group 2 innate lymphoid cells (ILC2), but whether certain metabolic enzymes control disease outcome has not been addressed. This study demonstrates that AMP-activated protein kinase (AMPK), a key driver of cellular energy, regulates type 2 immunity and restricts lung injury following hookworm infection. Mice with a selective deficiency in the AMPK catalytic α1 subunit in alveolar macrophages and conventional dendritic cells produced less IL-13 and CCL17 and had impaired expansion of ILC2 in damaged lung tissue compared with wild-type controls. Defective type 2 responses were marked by increased intestinal worm burdens, exacerbated lung injury, and increased production of IL-12/23p40, which, when neutralized, restored IL-13 production and improved lung recovery. Taken together, these data indicate that defective AMPK activity in myeloid cells negatively impacts type 2 responses through increased IL-12/23p40 production. These data support an emerging concept that myeloid cells and ILC2 can coordinately regulate tissue damage at mucosal sites through mechanisms dependent on metabolic enzyme function.


Asunto(s)
Proteínas Quinasas Activadas por AMP/inmunología , Infecciones por Uncinaria/inmunología , Inmunidad Innata/inmunología , Interleucina-12/inmunología , Interleucina-23/inmunología , Lesión Pulmonar/inmunología , Células Mieloides/inmunología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Infecciones por Uncinaria/metabolismo , Lesión Pulmonar/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo
3.
Mucosal Immunol ; 12(1): 64-76, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30337651

RESUMEN

Coordinated efforts between macrophages and epithelia are considered essential for wound healing, but the macrophage-derived molecules responsible for repair are poorly defined. This work demonstrates that lung macrophages rely upon Trefoil factor 2 to promote epithelial proliferation following damage caused by sterile wounding, Nippostrongylus brasiliensis or Bleomycin sulfate. Unexpectedly, the presence of T, B, or ILC populations was not essential for macrophage-driven repair. Instead, conditional deletion of TFF2 in myeloid-restricted CD11cCre TFF2 flox mice exacerbated lung pathology and reduced the proliferative expansion of CD45- EpCAM+ pro-SPC+ alveolar type 2 cells. TFF2 deficient macrophages had reduced expression of the Wnt genes Wnt4 and Wnt16 and reconstitution of hookworm-infected CD11cCre TFF2flox mice with rWnt4 and rWnt16 restored the proliferative defect in lung epithelia post-injury. These data reveal a previously unrecognized mechanism wherein lung myeloid phagocytes utilize a TFF2/Wnt axis as a mechanism that drives epithelial proliferation following lung injury.


Asunto(s)
Lesión Pulmonar/inmunología , Pulmón/inmunología , Macrófagos/fisiología , Nippostrongylus/inmunología , Mucosa Respiratoria/fisiología , Infecciones por Strongylida/inmunología , Factor Trefoil-2/metabolismo , Animales , Bleomicina , Antígeno CD11c/metabolismo , Comunicación Celular , Proliferación Celular , Células Cultivadas , Humanos , Pulmón/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor Trefoil-2/genética , Cicatrización de Heridas
4.
Nat Commun ; 10(1): 4408, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31562318

RESUMEN

Intestinal epithelial cells (IEC) have important functions in nutrient absorption, barrier integrity, regeneration, pathogen-sensing, and mucus secretion. Goblet cells are a specialized cell type of IEC that secrete Trefoil factor 3 (TFF3) to regulate mucus viscosity and wound healing, but whether TFF3-responsiveness requires a receptor is unclear. Here, we show that leucine rich repeat receptor and nogo-interacting protein 2 (LINGO2) is essential for TFF3-mediated functions. LINGO2 immunoprecipitates with TFF3, co-localizes with TFF3 on the cell membrane of IEC, and allows TFF3 to block apoptosis. We further show that TFF3-LINGO2 interactions disrupt EGFR-LINGO2 complexes resulting in enhanced EGFR signaling. Excessive basal EGFR activation in Lingo2 deficient mice increases disease severity during colitis and augments immunity against helminth infection. Conversely, TFF3 deficiency reduces helminth immunity. Thus, TFF3-LINGO2 interactions de-repress inhibitory LINGO2-EGFR complexes, allowing TFF3 to drive wound healing and immunity.


Asunto(s)
Colitis/inmunología , Receptores ErbB/inmunología , Helmintiasis/inmunología , Mucosa Intestinal/inmunología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/inmunología , Factor Trefoil-3/inmunología , Animales , Línea Celular Tumoral , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Caliciformes/inmunología , Células Caliciformes/metabolismo , Células Caliciformes/parasitología , Células HEK293 , Helmintiasis/metabolismo , Helmintiasis/parasitología , Helmintos/inmunología , Helmintos/fisiología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitología , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Organofosfonatos , Factor Trefoil-3/genética , Factor Trefoil-3/metabolismo , Células U937
5.
EBioMedicine ; 20: 217-229, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28529033

RESUMEN

Reactivation of latent viral reservoirs is on the forefront of HIV-1 eradication research. However, it is unknown if latency reversing agents (LRAs) increase the level of viral transcription from cells producing HIV RNA or harboring transcriptionally-inactive (latent) infection. We therefore developed a microfluidic single-cell-in-droplet (scd)PCR assay to directly measure the number of CD4+ T cells that produce unspliced (us)RNA and multiply spliced (ms)RNA following ex vivo latency reversal with either an histone deacetylase inhibitor (romidepsin) or T cell receptor (TCR) stimulation. Detection of HIV-1 transcriptional activity can also be performed on hundreds of thousands of CD4+ T-cells in a single experiment. The scdPCR method was then applied to CD4+ T cells obtained from HIV-1-infected individuals on antiretroviral therapy. Overall, our results suggest that effects of LRAs on HIV-1 reactivation may be heterogeneous-increasing transcription from active cells in some cases and increasing the number of transcriptionally active cells in others. Genomic DNA and human mRNA isolated from HIV-1 reactivated cells could also be detected and quantified from individual cells. As a result, our assay has the potential to provide needed insight into various reservoir eradication strategies.


Asunto(s)
Infecciones por VIH/virología , VIH-1/genética , Ensayos Analíticos de Alto Rendimiento , Reacción en Cadena de la Polimerasa , ARN Viral , Análisis de la Célula Individual , Latencia del Virus , Adulto , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Infecciones por VIH/tratamiento farmacológico , Humanos , Persona de Mediana Edad , Análisis de Secuencia de ADN , Carga Viral , Activación Viral/genética
6.
Procedia Vaccinol ; 8: 38-42, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25165491

RESUMEN

Burkholderia pseudomallei (Bps)is the causative agent of melioidosis and is endemic in regions of northern Australia and Southeast Asia. Bps is inherently resistant to multiple antibiotics and is considered a potential biological warfare agent by the U.S. DHHS. Therefore, effective vaccines are necessary to prevent natural infection and to safeguard against biological attack with this organism. In our previous work we have shown that immunization with naturally derived outer membrane vesicles (OMVs) from Bps provides significant protection against lethal aerosol and systemic infection in BALB/c mice. In this work, we evaluated the safety and immunogenicity of escalating doses of OMV vaccine in rhesus macaques. We show that immunization of rhesus macaques with Bps OMVs generates humoral immuneresponses to protective protein and polysaccharide antigens without any associated toxicity or reactogenicity. These results lay the groundwork for evaluation of protective efficacy of the OMV vaccine in the nonhuman primate model of melioidosis.

7.
Clin Vaccine Immunol ; 21(5): 747-54, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24671550

RESUMEN

The environmental Gram-negative encapsulated bacillus Burkholderia pseudomallei is the causative agent of melioidosis, a disease associated with high morbidity and mortality rates in areas of Southeast Asia and northern Australia in which the disease is endemic. B. pseudomallei is also classified as a tier I select agent due to the high level of lethality of the bacterium and its innate resistance to antibiotics, as well as the lack of an effective vaccine. Gram-negative bacteria, including B. pseudomallei, secrete outer membrane vesicles (OMVs) which are enriched with multiple protein, lipid, and polysaccharide antigens. Previously, we demonstrated that immunization with multivalent B. pseudomallei-derived OMVs protects highly susceptible BALB/c mice against an otherwise lethal aerosol challenge. In this work, we evaluated the protective efficacy of OMV immunization against intraperitoneal challenge with a heterologous strain because systemic infection with phenotypically diverse environmental B. pseudomallei strains poses another hazard and a challenge to vaccine development. We demonstrated that B. pseudomallei OMVs derived from strain 1026b afforded significant protection against septicemic infection with B. pseudomallei strain K96243. OMV immunization induced robust OMV-, lipopolysaccharide-, and capsular polysaccharide-specific serum IgG (IgG1, IgG2a, and IgG3) and IgM antibody responses. OMV-immune serum promoted bacterial killing in vitro, and passive transfer of B. pseudomallei OMV immune sera protected naive mice against a subsequent challenge. These results indicate that OMV immunization provides antibody-mediated protection against acute, rapidly lethal sepsis in mice. B. pseudomallei-derived OMVs may represent an efficacious multivalent vaccine strategy against melioidosis.


Asunto(s)
Vacunas Bacterianas/inmunología , Burkholderia pseudomallei/inmunología , Melioidosis/prevención & control , Vesículas Secretoras/inmunología , Sepsis/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/administración & dosificación , Actividad Bactericida de la Sangre , Protección Cruzada , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Ratones Endogámicos BALB C , Análisis de Supervivencia
8.
PLoS Negl Trop Dis ; 7(5): e2212, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23675544

RESUMEN

Burkholderia pseudomallei is a Gram-negative, facultative intracellular bacillus and the etiologic agent of melioidosis, a severe disease in Southeast Asia and Northern Australia. Like other multidrug-resistant pathogens, the inherent antibiotic resistance of B. pseudomallei impedes treatment and highlights the need for alternative therapeutic strategies that can circumvent antimicrobial resistance mechanisms. In this work, we demonstrate that host prostaglandin E2 (PGE2) production plays a regulatory role in the pathogenesis of B. pseudomallei. PGE2 promotes B. pseudomallei intracellular survival within macrophages and bacterial virulence in a mouse model of pneumonic melioidosis. PGE2-mediated immunosuppression of macrophage bactericidal effector functions is associated with increased arginase 2 (Arg2) expression and decreased nitric oxide (NO) production. Treatment with a commercially-available COX-2 inhibitor suppresses the growth of B. pseudomallei in macrophages and affords significant protection against rapidly lethal pneumonic melioidosis when administered post-exposure to B. pseudomallei-infected mice. COX-2 inhibition may represent a novel immunotherapeutic strategy to control infection with B. pseudomallei and other intracellular pathogens.


Asunto(s)
Burkholderia pseudomallei/inmunología , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Ciclooxigenasa 2/metabolismo , Melioidosis/tratamiento farmacológico , Neumonía/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Macrófagos/enzimología , Macrófagos/inmunología , Macrófagos/microbiología , Melioidosis/microbiología , Ratones , Ratones Endogámicos BALB C , Neumonía/microbiología , Resultado del Tratamiento
9.
Vaccine ; 29(46): 8381-9, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-21871517

RESUMEN

Burkholderia pseudomallei, and other members of the Burkholderia, are among the most antibiotic-resistant bacterial species encountered in human infection. Mortality rates associated with severe B. pseudomallei infection approach 50% despite therapeutic treatment. A protective vaccine against B. pseudomallei would dramatically reduce morbidity and mortality in endemic areas and provide a safeguard for the U.S. and other countries against biological attack with this organism. In this study, we investigated the immunogenicity and protective efficacy of B. pseudomallei-derived outer membrane vesicles (OMVs). Vesicles are produced by Gram-negative and Gram-positive bacteria and contain many of the bacterial products recognized by the host immune system during infection. We demonstrate that subcutaneous (SC) immunization with OMVs provides significant protection against an otherwise lethal B. pseudomallei aerosol challenge in BALB/c mice. Mice immunized with B. pseudomallei OMVs displayed OMV-specific serum antibody and T-cell memory responses. Furthermore, OMV-mediated immunity appears species-specific as cross-reactive antibody and T cells were not generated in mice immunized with Escherichia coli-derived OMVs. These results provide the first compelling evidence that OMVs represent a non-living vaccine formulation that is able to produce protective humoral and cellular immunity against an aerosolized intracellular bacterium. This vaccine platform constitutes a safe and inexpensive immunization strategy against B. pseudomallei that can be exploited for other intracellular respiratory pathogens, including other Burkholderia and bacteria capable of establishing persistent infection.


Asunto(s)
Vacunas Bacterianas/inmunología , Burkholderia pseudomallei/inmunología , Exosomas/inmunología , Melioidosis/prevención & control , Neumonía Bacteriana/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/administración & dosificación , Reacciones Cruzadas , Femenino , Memoria Inmunológica , Inyecciones Subcutáneas , Melioidosis/inmunología , Melioidosis/mortalidad , Ratones , Ratones Endogámicos BALB C , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/mortalidad , Análisis de Supervivencia , Linfocitos T/inmunología
10.
PLoS One ; 5(12): e14361, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21179405

RESUMEN

Burkholderia pseudomallei is the etiological agent of melioidosis, a disease endemic in parts of Southeast Asia and Northern Australia. Currently there is no licensed vaccine against infection with this biological threat agent. In this study, we employed an immunoproteomic approach and identified bacterial Elongation factor-Tu (EF-Tu) as a potential vaccine antigen. EF-Tu is membrane-associated, secreted in outer membrane vesicles (OMVs), and immunogenic during Burkholderia infection in the murine model of melioidosis. Active immunization with EF-Tu induced antigen-specific antibody and cell-mediated immune responses in mice. Mucosal immunization with EF-Tu also reduced lung bacterial loads in mice challenged with aerosolized B. thailandensis. Our data support the utility of EF-Tu as a novel vaccine immunogen against bacterial infection.


Asunto(s)
Infecciones por Burkholderia/microbiología , Burkholderia pseudomallei/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Animales , Antígenos Bacterianos/química , Infecciones por Burkholderia/metabolismo , Clonación Molecular , Electroforesis en Gel Bidimensional/métodos , Femenino , Sistema Inmunológico , Melioidosis/microbiología , Ratones , Ratones Endogámicos BALB C , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA