Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Br J Cancer ; 130(4): 638-650, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38142265

RESUMEN

BACKGROUND: Wilms tumor (WT) exhibits structural and epigenetic changes at chromosome 11p15, which also cause Beckwith-Wiedemann Syndrome (BWS). Children diagnosed with BWS have increased risk for WT. The aim of this study is to identify the molecular signaling signatures in BWS driving these tumors. METHODS: We performed whole exome sequencing, methylation array analysis, and gene expression analysis on BWS-WT samples. Our data were compared to publicly available nonBWS data. We categorized WT from BWS and nonBWS patients by assessment of 11p15 methylation status and defined 5 groups- control kidney, BWS-nontumor kidney, BWS-WT, normal-11p15 nonBWS-WT, altered-11p15 nonBWS-WT. RESULTS: BWS-WT samples showed single nucleotide variants in BCORL1, ASXL1, ATM and AXL but absence of recurrent gene mutations associated with sporadic WT. We defined a narrow methylation range stratifying nonBWS-WT samples. BWS-WT and altered-11p15 nonBWS-WT showed enrichment of common and unique molecular signatures based on global differential methylation and gene expression analysis. CTNNB1 overexpression and broad range of interactions were seen in the BWS-WT interactome study. CONCLUSION: While WT predisposition in BWS is well-established, as are 11p15 alterations in nonBWS-WT, this study focused on stratifying tumor genomics by 11p15 status. Further investigation of our findings may identify novel therapeutic targets in WT oncogenesis.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Neoplasias Renales , Tumor de Wilms , Niño , Humanos , Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN , Tumor de Wilms/genética , Genotipo , Neoplasias Renales/genética
2.
Molecules ; 28(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446888

RESUMEN

Despite several treatment options for blood cancer, mortality remains high due to relapse and the disease's aggressive nature. Elevated levels of HSP90, a molecular chaperone essential for protein folding, are associated with poor prognosis in leukemia and lymphoma. HSP90 as a target for chemotherapy has been met with limited success due to toxicity and induction of heat shock. This study tested the activity of an HSP90 inhibitor, SP11, against leukemic cells, mouse lymphoma allograft, and xenograft models. SP11 induced cytotoxicity in vitro in leukemic cell lines and induced cell death via apoptosis, with minimal effect on normal cells. SP11 induced cell death by altering the status of HSP90 client proteins both in vitro and in vivo. SP11 reduced the tumor burden in allograft and xenograft mouse models without apparent toxicity. The half-life of SP11 in the plasma was approximately 2 h. SP11 binding was observed at both the N-terminal and C-terminal domains of HSP90. C-terminal binding was more potent than N-terminal binding of HSP90 in silico and in vitro using isothermal calorimetry. SP11 bioavailability and minimal toxicity in vivo make it a potential candidate to be developed as a novel anticancer agent.


Asunto(s)
Antineoplásicos , Cumarinas , Humanos , Animales , Ratones , Cumarinas/farmacología , Línea Celular Tumoral , Proteínas HSP90 de Choque Térmico/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Pliegue de Proteína , Apoptosis
3.
BMC Genomics ; 23(1): 807, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36474139

RESUMEN

ST08 and ST09 are potent curcumin derivatives with antiproliferative, apoptotic, and migrastatic properties. Both ST08 and ST09 exhibit in vitro and in vivo anticancer properties. As reported earlier, these derivatives were highly cytotoxic towards MDA-MB-231 triple-negative breast cancer cells with IC50 values in the nanomolar (40-80nM) range.In this study,we performed whole-genome bisulfite sequencing(WGBS) of untreated (control), ST08 and ST09 (treated) triple-negative breast cancer cell line MDA-MB-231 to unravel epigenetic changes induced by the drug. We identified differentially methylated sites (DMSs) enriched in promoter regions across the genome. Analysis of the CpG island promoter methylation identified 12 genes common to both drugs, and 50% of them are known to be methylated in patient samples that were hypomethylated by drugs belonging to the homeobox family transcription factors.Methylation analysis of the gene body revealed 910 and 952 genes to be hypermethylatedin ST08 and ST09 treated MDA-MB-231 cells respectively. Correlation of the gene body hypermethylation with expression revealed CACNAH1 to be upregulated in ST08 treatment and CDH23 upregulation in ST09.Further, integrated analysis of the WGBS with RNA-seq identified uniquely altered pathways - ST08 altered ECM pathway, and ST09 cell cycle, indicating drug-specific signatures.


Asunto(s)
Curcumina , Neoplasias de la Mama Triple Negativas , Humanos , Curcumina/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Metilación de ADN
4.
Molecules ; 25(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008036

RESUMEN

PURPOSE: Curcumin is known for its anticancer and migrastatic activity in various cancers, including breast cancer. Newer curcumin derivatives are being explored to overcome limitations of curcumin like low bioavailability, stability, and side effects due to its higher dose. In this study, the synthesis of ST09, a novel curcumin derivative, and its antiproliferative, cytotoxic, and migrastatic properties have been explored both in vitro and in vivo. METHODS: After ST09 synthesis, anticancer activity was studied by performing standard cytotoxicity assays namely, lactate dehydrogenase (LDH) release assay, 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyletrazolium bromide (MTT), and trypan blue exclusion assay. Annexin-FITC, cell cycle analysis using flow cytometry, and Western blotting were performed to elucidate cell death mechanisms. The effect on the inhibition of cell migration was studied by transwell migration assay. An EAC (Ehrlich Ascites carcinoma) induced mouse tumor model was used to study the effect of ST09 on tumor regression. Drug toxicity was measured using aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN), and flow-cytometry based lymphocyte count. Histological analysis was performed for assessment of any tissue injury post ST09 treatment. RESULTS: ST09 shows an approximate 100-fold higher potency than curcumin, its parent compound, on breast tumor cell lines MCF-7 and MDA-MB231. ST09 arrests the cell cycle in a cell type-specific manner and induces an intrinsic apoptotic pathway both in vitro and in vivo. ST09 inhibits migration by downregulating matrix metalloprotease 1,2 (MMP1,2) and Vimentin. In vivo, ST09 administration led to decreased tumor volume in a mouse allograft model by boosting immunity with no significant drug toxicity. CONCLUSION: ST09 exhibits antiproliferative and cytotoxic activity at nanomolar concentrations. It induces cell death by activation of the intrinsic pathway of apoptosis both in vitro and in vivo. It also inhibits migration and invasion. This study provides evidence that ST09 can potentially be developed as a novel antitumor drug candidate for highly metastatic and aggressive breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/farmacología , Progresión de la Enfermedad , Neoplasias Mamarias Animales/patología , Aloinjertos/efectos de los fármacos , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Curcumina/química , Modelos Animales de Enfermedad , Femenino , Humanos , Concentración 50 Inhibidora , Metaloproteinasas de la Matriz/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Pruebas de Toxicidad
5.
BMC Complement Altern Med ; 19(1): 273, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31638975

RESUMEN

BACKGROUND: Curcumin is known for its multitude of medicinal properties, including anti-cancer and migrastatic activity. Efforts to overcome poor bioavailability, stability, and side effects associated with the higher dose of curcumin has led to the development of newer derivatives of curcumin. Thus, the focus of this study is to screen novel curcumin derivatives, namely ST03 and ST08, which have not been reported before, for their cytotoxicity and migrastatic property on cancer cells. METHODS: Anti-cancer activity of ST03 and ST08 was carried out using standard cytotoxicity assays viz., LDH, MTT, and Trypan blue on both solid and liquid cancer types. Flow cytometric assays and western blotting was used to investigate the cell death mechanisms. Transwell migration assay was carried out to check for migrastatic properties of the compounds. RESULTS: Both the compounds, ST03 and ST08, showed ~ 100 fold higher potency on liquid and solid tumour cell lines compared to its parent compound curcumin. They induced cytotoxicity by activating the intrinsic pathway of apoptosis in the breast (MDA-MB-231) and ovarian cancer cell lines (PA-1) bearing metastatic and stem cell properties, respectively. Moreover, ST08 also showed inhibition on breast cancer cell migration by inhibiting MMP1 (matrix metalloproteinase 1). CONCLUSION: Both ST03 and ST08 exhibit anti-cancer activity at nanomolar concentration. They induce cell death by activating the intrinsic pathway of apoptosis. Also, they inhibit migration of the cancer cells by inhibiting MMP1 in breast cancer cells.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/fisiopatología , Movimiento Celular/efectos de los fármacos , Curcumina/química , Curcumina/farmacología , Neoplasias Ováricas/fisiopatología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Metaloproteinasa 1 de la Matriz/metabolismo , Estructura Molecular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo
6.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948745

RESUMEN

Beckwith-Wiedemann Syndrome (BWS) is an epigenetic overgrowth syndrome caused by methylation changes in the human 11p15 chromosomal locus. Patients with BWS exhibit tissue overgrowth, as well as an increased risk of childhood neoplasms in the liver and kidney. To understand the impact of these 11p15 changes, specifically in the liver, we performed single-nucleus RNA sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seq) to generate paired, cell-type-specific transcriptional and chromatin accessibility profiles of both BWS-liver and nonBWS-liver nontumorous tissue. Our integrated RNA+ATACseq multiomic approach uncovered hepatocyte-specific enrichment and activation of the peroxisome proliferator-activated receptor α (PPARA) - a liver metabolic regulator. To confirm our findings, we utilized a BWS-induced pluripotent stem cell (iPSC) model, where cells were differentiated into hepatocytes. Our data demonstrates the dysregulation of lipid metabolism in BWS-liver, which coincided with observed upregulation of PPARA during hepatocyte differentiation. BWS liver cells exhibited decreased neutral lipids and increased fatty acid ß-oxidation, relative to controls. We also observed increased reactive oxygen species (ROS) byproducts in the form of peroxidated lipids in BWS hepatocytes, which coincided with increased oxidative DNA damage. This study proposes a putative mechanism for overgrowth and cancer predisposition in BWS liver due to perturbed metabolism.

7.
PeerJ ; 11: e16033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810779

RESUMEN

Genetic heterogeneity influences the prognosis and therapy of breast cancer. The cause of disease progression varies and can be addressed individually. To identify the mutations and their impact on disease progression at an individual level, we sequenced exome and transcriptome from matched normal-tumor samples. We utilised DawnRank to prioritise driver genes and identify specific mutations in Indian patients. Mutations in the C3 and HLA genes were identified as drivers of disease progression, indicating the involvement of the innate immune system. We performed immune profiling on 16 matched normal/tumor samples using CIBERSORTx. We identified CD8+ve T cells, M2 macrophages, and neutrophils to be enriched in luminal A and T cells CD4+naïve, natural killer (NK) cells activated, T follicular helper (Tfh) cells, dendritic cells activated, and neutrophils in triple-negative breast cancer (TNBC) subtypes. Weighted gene co-expression network analysis (WGCNA) revealed activation of T cell-mediated response in ER positive samples and Interleukin and Interferons in ER negative samples. WGCNA analysis also identified unique pathways for each individual, suggesting that rare mutations/expression signatures can be used to design personalised treatment.


Asunto(s)
Exoma , Neoplasias de la Mama Triple Negativas , Humanos , Exoma/genética , Neoplasias de la Mama Triple Negativas/genética , Progresión de la Enfermedad , ARN Mensajero/genética , Inmunidad Innata/genética
8.
medRxiv ; 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38168424

RESUMEN

Beckwith-Wiedemann Syndrome (BWS, OMIM #130650) is a congenital epigenetic disorder in humans which affects approximately 1 in 10,340 children. The incidence is likely an underestimation as the condition is usually recognized based on observable phenotypes at birth. BWS children have up to a 28% risk of developing tumors and currently, only 80% of patients can be corroborated molecularly (epimutations/variants). It is unknown how the subtypes of this condition are molecularly similar/dissimilar globally, therefore there is a need to deeply characterize the syndrome at the molecular level. Here we characterize the methylome, transcriptome and chromatin configuration of 18 BWS individuals together with the animal model of the condition, the bovine large offspring syndrome (LOS). Sex specific comparisons are performed for a subset of the BWS patients and LOS. Given that this epigenetic overgrowth syndrome has been characterized as a loss-of-imprinting condition, parental allele-specific comparisons were performed using the bovine animal model. In general, the differentially methylated regions (DMRs) detected in BWS and LOS showed significant enrichment for CTCF binding sites. Altered chromosome compartments in BWS and LOS were positively correlated with gene expression changes, and the promoters of differentially expressed genes showed significant enrichment for DMRs, differential topologically associating domains, and differential A/B compartments in some comparisons of BWS subtypes and LOS. We show shared regions of dysregulation between BWS and LOS, including several HOX gene clusters, and also demonstrate that altered DNA methylation differs between the clinically epigenetically identified BWS patients and those identified as having DNA variants (i.e. CDKN1C microdeletion). Lastly, we highlight additional genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular methodologies. In summary, our results suggest that genome-wide alternation of chromosome architecture, which is partially caused by DNA methylation changes, also contribute to the development of BWS and LOS.

9.
Cancer Rep (Hoboken) ; 5(10): e1596, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34981672

RESUMEN

BACKGROUND: Curcumin is well known for its anticancer properties. Its cytotoxic activity has been documented in several cancer cell lines, including breast cancer. The pleiotropic activity of curcumin as an antioxidant, an antiangiogenic, antiproliferative, and pro-apoptotic, is due to its diverse targets, such as signaling pathways, protein/enzyme, or noncoding gene. AIM: This study aimed to identify key miRNAs and mRNAs induced by curcumin in breast cancer cells MCF7, T47D (hormone positive), versus MDA-MB231 (hormone negative) using comparative analysis of global gene expression profiles. METHODS: RNA was isolated and subjected to mRNA and miRNA library sequencing to study the global gene expression profile of curcumin-treated breast cancer cells. The differential expression of gene and miRNA was performed using the DESeq R package. The enriched pathways were studied using cluster profileR, and integrated miRNA-mRNA analysis was carried out using miRtarvis and miRmapper tools. RESULTS: Curcumin treatment led to upregulation of 59% TSGs in MCF7, 21% in MDA-MB-231 cells, and 36% TSGs in T47D, and downregulation of 57% oncogenes in MCF7, 76% in MDA-MB-231, and 91% in T47D. Similarly, curcumin treatment led to upregulation of 32% TSmiRs in MCF7, 37.5% in MDA-MB231, and 62.5% in T47D, and downregulation of 77% oncomiRs in MCF7, 50% in MDA-MB231 and 28.6% in T47D. Integrated analysis of miRNA-mRNA led to the identification of a common NFKB pathway altered by curcumin in all three cell lines. Analysis of uniquely enriched pathway revealed non-integrin membrane-ECM interactions and laminin interactions in MCF7; extracellular matrix organization and degradation in MDA-MB-231 and cell cycle arrest and G2/M transition in T47D. CONCLUSION: Curcumin regulates miRNA and mRNA in a cell type-specific manner. The integrative analysis led to the detection of miRNAs and mRNAs pairs, which can be used as biomarkers associated with carcinogenesis, diagnostic, and treatment response in breast cancer.


Asunto(s)
Neoplasias de la Mama , Curcumina , MicroARNs , Antioxidantes , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Curcumina/farmacología , Femenino , Hormonas , Humanos , Laminina , MicroARNs/genética , ARN Mensajero/genética
10.
Front Oncol ; 12: 835027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615145

RESUMEN

ST08 is a novel curcumin derivative that exhibited apoptotic and anti-migratory activity in MDA-MB-231, triple-negative breast cancer cells reported earlier. In this study, we further explored the anticancer properties of ST08. ST08 reduced tumor burden in vivo and induced apoptosis through the mitochondrial pathway both in vitro and in vivo. ST08 potentiated the effect of cisplatin in vitro and in vivo in mouse EAC breast cancer models with minimal toxicity. ST08 induced alterations in the gene expression were studied by parallel analysis of miRNA and mRNA. 74 differentially expressed miRNA regulated 114 mRNA in triple-negative (MDA-MB-231) cancer cells. Pathway related to the ECM was altered in mesenchymal MDA-MB-231 cells. We constructed a unique miRNA-mRNA interaction network, and one of the pathways regulated by miRNA was NF-κB. Targets of NF-κB like MMP1, PTX3, and MMP2 were downregulated in MDA-MB-231 in response to ST08 treatment. PMA induced cell proliferation was abrogated by ST08 treatment, and no additional cell cytotoxicity was observed when used in combination with IKK-16 indicating ST08 regulation of NF-κB pathway in MDA-MB-231 cells.

11.
Front Genet ; 13: 932060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386805

RESUMEN

Breast cancer (BC) is one of the leading causes of cancer-associated death in women. Despite the progress in therapeutic regimen, resistance and recurrence of breast cancer have affected the overall survival of patients. The present signatures, such as PAM50 and Oncotype DX, do not segregate the Indian breast samples based on molecular subtypes. This study aims at finding signatures of long noncoding RNA (lncRNA) and mRNA in Indian breast cancer patients using RNA-seq. We have analyzed the survival based on the menopausal and hormone status of 380 Indian breast cancer patients, and of these, we have sequenced and analyzed matched tumor-normal transcriptome of 17 (pre- and postmenopausal) Indian breast cancer patients representing six different subtypes, namely, four patients in triple-positive, three patients in estrogen receptor-positive (ER+ve), three patients in estrogen and progesterone receptors-positive (ER+ve, PR+ve), two patients in human epidermal growth factor receptor (Her2+ve), three patients in triple-negative, and one patient in ER+ve and Her2+ve subtypes. We have identified a 25 mRNA-27 lncRNA gene set, which segregated the subtypes in our data. A pathway analysis of the differentially expressed genes revealed downregulated ECM interaction and upregulated immune regulation, cell cycle, DNA damage response and repair, and telomere elongation in premenopausal women. Postmenopausal women showed downregulated metabolism, innate immune system, upregulated translation, sumoylation, and AKT2 activation. A Kaplan-Meier survival analysis revealed that menopausal status, grade of the tumor, and hormonal status displayed statistically significant effects (p < 0.05) on the risk of mortality due to breast cancer. Her2+ve patients showed low overall survival. One of the unique lncRNA-mRNA pairs specific to the EP-subtype, SNHG12 and EPB41, showed interaction, which correlates with their expression level; SNHG12 is downregulated and EPB41 is upregulated in EP samples.

12.
Biochem Pharmacol ; 184: 114365, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33310051

RESUMEN

Glutathione peroxidases are well known antioxidant enzymes. They catalyze the reduction of hydrogen peroxide or organic hydroperoxides using glutathione. Among the reported 8 GPxs, GPx3, a highly conserved protein and a major ROS scavenger in plasma, has been well studied and confirmed to play a vital role as a tumor suppressor in most cancers. Additionally, this gene is known to be epigenetically regulated. It is downregulated either by hypermethylation or genomic deletion. In this review, we summarized the role of GPX3 in various cancers, its use as a prognostic biomarker, and a potential target for clinical intervention.


Asunto(s)
Antioxidantes/metabolismo , Glutatión Peroxidasa/metabolismo , Neoplasias/metabolismo , Animales , Movimiento Celular , Resistencia a Antineoplásicos/fisiología , Glutatión Peroxidasa/sangre , Glutatión Peroxidasa/genética , Humanos , Inflamación/metabolismo , Ratones , Mutación , Neoplasias/patología , Polimorfismo de Nucleótido Simple
14.
Oncotarget ; 11(18): 1603-1617, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405336

RESUMEN

BACKGROUND: Quinacrine (QC) is popular for its anti-malarial activity. It has been reported exhibiting anti-cancerous properties by suppressing nuclear factor-κB and activating p53 signaling; however, its effect on cellular pathways in human non-small cell lung cancer (NSCLC) has not been studied. MATERIALS AND METHODS: Binding of QC with GSTA1 was studied computationally as well as through GST activity assay kit. Cell viability, cell cycle and mitochondrial membrane potential activity were studied using flow cytometry. RT-PCR and western blot were carried out to understand the involvement of various genes at their mRNA as well as protein level. RESULTS: QC inhibited the activity of GSTA1 approximately by 40-45% which inhibits cell survival and promotes apoptosis. QC reduced viability of NSCLC cells in a dose-dependent manner. It also causes nuclear fragmentation, G1/S arrest of cell cycle and ROS generation; which along with disruption of mitochondrial membrane potential activity leads to apoptotic fate. CONCLUSIONS: Results revealed, QC has promising anti-cancer potential against NSCLC cells via inhibition of GSTA1, induction of G1/S arrest and ROS mediated apoptotic signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA