Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Exp Bot ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676643

RESUMEN

Cannabis sativa L. glandular trichomes (GTs) synthesise large amounts of secondary metabolites, predominantly cannabinoids and terpenoids. The associated demand for carbon and energy makes GTs strong sink tissues with indications that their secondary metabolism is coupled to the availability of photoassimilates. Many metabolites show diurnal patterns of flux, but it is unknown whether cannabinoids and terpenoids are regulated by time of day. We quantified cannabinoids, terpenoids and the GT proteome over a 12-hour light period in flowers of Hindu Kush, a high-tetrahydrocannabinol (THC) cultivar. Major cannabinoids changed significantly over the course of day, resulting in an increase in total measured cannabinoids. Major terpenoids also changed, with sesquiterpenes generally decreasing with day progression. While monoterpenes generally did not decrease, the second most abundant, α-pinene, increased. The GT proteome changed the most within the first six hours of the day and analysis of differentially abundant proteins indicated upregulation of primary metabolism. Surprisingly, key cannabinoid biosynthetic enzymes decreased with daytime progression despite increases in cannabinoid content, which indicate that daytime increases of photoassimilates are the main driver of cannabinoid regulation. This first reporting of variability of cannabinoid and terpenoid biosynthesis over the course of the day has implications for Cannabis research and production.

2.
Acta Neuropathol ; 147(1): 9, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175301

RESUMEN

Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD. Here, we identify both STMN2 and UNC13A cryptic exons in Alzheimer's disease patients, that correlate with TDP-43 pathology burden, but not with amyloid-ß or tau deposits. We also demonstrate that processing of the STMN2 pre-mRNA is more sensitive to TDP-43 loss of function than UNC13A. In addition, full-length RNAs encoding STMN2 and UNC13A are suppressed in large RNA-seq datasets generated from Alzheimer's disease post-mortem brain tissue. Collectively, these results open exciting new avenues to use STMN2 and UNC13A as potential therapeutic targets in a broad range of neurodegenerative conditions with TDP-43 proteinopathy including Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Humanos , Enfermedad de Alzheimer/genética , Proteínas de Unión al ADN/genética , Empalme del ARN , ARN Mensajero/genética , Estatmina/genética
3.
Brain ; 144(5): 1576-1589, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33769452

RESUMEN

Seizures can emerge from multiple or large foci in temporal lobe epilepsy, complicating focally targeted strategies such as surgical resection or the modulation of the activity of specific hippocampal neuronal populations through genetic or optogenetic techniques. Here, we evaluate a strategy in which optogenetic activation of medial septal GABAergic neurons, which provide extensive projections throughout the hippocampus, is used to control seizures. We utilized the chronic intrahippocampal kainate mouse model of temporal lobe epilepsy, which results in spontaneous seizures and as is often the case in human patients, presents with hippocampal sclerosis. Medial septal GABAergic neuron populations were immunohistochemically labelled and were not reduced in epileptic conditions. Genetic labelling with mRuby of medial septal GABAergic neuron synaptic puncta and imaging across the rostral to caudal extent of the hippocampus, also indicated an unchanged number of putative synapses in epilepsy. Furthermore, optogenetic stimulation of medial septal GABAergic neurons consistently modulated oscillations across multiple hippocampal locations in control and epileptic conditions. Finally, wireless optogenetic stimulation of medial septal GABAergic neurons, upon electrographic detection of spontaneous hippocampal seizures, resulted in reduced seizure durations. We propose medial septal GABAergic neurons as a novel target for optogenetic control of seizures in temporal lobe epilepsy.


Asunto(s)
Neuronas GABAérgicas/fisiología , Hipocampo/fisiopatología , Optogenética , Convulsiones/fisiopatología , Núcleos Septales/fisiopatología , Animales , Epilepsia del Lóbulo Temporal/fisiopatología , Femenino , Masculino , Ratones
4.
Ecol Appl ; 30(7): e02143, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32335990

RESUMEN

Although three-dimensional (3D) seismic surveys have improved the success rate of exploratory drilling for oil and gas, the impacts have received little scientific scrutiny, despite affecting more area than any other oil and gas activity. To aid policy-makers and scientists, we reviewed studies of the landscape impacts of 3D-seismic surveys in the Arctic. We analyzed a proposed 3D-seismic program in northeast Alaska, in the northern Arctic National Wildlife Refuge, which includes a grid 63,000 km of seismic trails and additional camp-move trails. Current regulations are not adequate to eliminate impacts from these activities. We address issues related to the high-density of 3D trails compared to 2D methods, with larger crews, more camps, and more vehicles. We focus on consequences to the hilly landscapes, including microtopography, snow, vegetation, hydrology, active layers, and permafrost. Based on studies of 2D-seismic trails created in 1984-1985 in the same area by similar types of vehicles, under similar regulations, approximately 122 km2 would likely sustain direct medium- to high-level disturbance from the proposed exploration, with possibly expanded impacts through permafrost degradation and hydrological connectivity. Strong winds are common, and snow cover necessary to minimize impacts from vehicles is windblown and inadequate to protect much of the area. Studies of 2D-seismic impacts have shown that moist vegetation types, which dominate the area, sustain longer-lasting damage than wet or dry types, and that the heavy vehicles used for mobile camps caused the most damage. The permafrost is ice rich, which combined with the hilly topography, makes it especially susceptible to thermokarst and erosion triggered by winter vehicle traffic. The effects of climate warming will exacerbate the impacts of winter travel due to warmer permafrost and a shift of precipitation from snow to rain. The cumulative impacts of 3D-seismic traffic in tundra areas need to be better assessed, together with the effects of climate change and the industrial development that would likely follow. Current data needs include studies of the impacts of 3D-seismic exploration, better climate records for the Arctic National Wildlife Refuge, especially for wind and snow; and high-resolution maps of topography, ground ice, hydrology, and vegetation.


Asunto(s)
Hielos Perennes , Tundra , Alaska , Regiones Árticas , Nieve
5.
Genet Sel Evol ; 50(1): 63, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463512

RESUMEN

BACKGROUND: Coccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high costs of effective vaccines, there are commercial incentives to breed chickens with greater resistance to this important production disease. To identify phenotypic biomarkers that are associated with the production impacts of coccidiosis, and to assess their covariance and heritability, 942 Cobb500 commercial broilers were subjected to a defined challenge with Eimeria tenella (Houghton). Three traits were measured: weight gain (WG) during the period of infection, caecal lesion score (CLS) post mortem, and the level of a serum biomarker of intestinal inflammation, i.e. circulating interleukin 10 (IL-10), measured at the height of the infection. RESULTS: Phenotypic analysis of the challenged chicken cohort revealed a significant positive correlation between CLS and IL-10, with significant negative correlations of both these traits with WG. Eigenanalysis of phenotypic covariances between measured traits revealed three distinct eigenvectors. Trait weightings of the first eigenvector, (EV1, eigenvalue = 59%), were biologically interpreted as representing a response of birds that were susceptible to infection, with low WG, high CLS and high IL-10. Similarly, the second eigenvector represented infection resilience/resistance (EV2, 22%; high WG, low CLS and high IL-10), and the third eigenvector tolerance (EV3, 19%; high WG, high CLS and low IL-10), respectively. Genome-wide association studies (GWAS) identified two SNPs that were associated with WG at the suggestive level. CONCLUSIONS: Eigenanalysis separated the phenotypic impact of a defined challenge with E. tenella on WG, caecal inflammation/pathology, and production of IL-10 into three major eigenvectors, indicating that the susceptibility-resistance axis is not a single continuous quantitative trait. The SNPs identified by the GWAS for body weight were located in close proximity to two genes that are involved in innate immunity (FAM96B and RRAD).


Asunto(s)
Pollos/genética , Coccidiosis/veterinaria , Eimeria tenella/patogenicidad , Interleucina-10/sangre , Animales , Peso Corporal/genética , Ciego/patología , Coccidiosis/genética , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Interleucina-10/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Enfermedades de las Aves de Corral/genética , Aumento de Peso/genética
6.
Syst Parasitol ; 95(8-9): 783-806, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30284190

RESUMEN

Eight species of the trematode family Bucephalidae Poche, 1907 are reported from teleost fishes in Moreton Bay, Queensland, Australia. Heterobucephalopsis yongi n. sp. is described from Gymnothorax eurostus (Muraenidae); the new form is distinguished from its congeners in the possession of a tiny cirrus-sac relative to body length, the length of the caecum, the position of the mouth and pharynx, and the position of the testes and ovary. Two known species of Dollfustrema Eckmann, 1934, D. durum Nolan, Curran, Miller, Cutmore, Cantacessi & Cribb, 2015 and D. gibsoni Nolan & Cribb, 2010, are reported from Gymnothorax pseudothyrsoideus (Bleeker) (Muraenidae); although both species were described from Australian waters, this represents the first reports from Moreton Bay and G. pseudothyrsoideus. Four species of Prosorhynchus Odhner, 1905 are reported, including one new, P. brayi n. sp., which is described from Epinephelus coioides (Hamilton) (Serranidae); P. brayi n. sp. is distinguished from its congeners in the possession of vitelline follicles in a confluent arc distinctly posterior to a conical rhynchus, uterine coils that do not extend anterior to the vitelline arc, contiguous testes, a cirrus-sac that reaches anteriorly to at least the level of the posterior testis and a short excretory vesicle. Three known species of Prosorhynchus are reported from Australia, for the first time: P. luzonicus Velasquez, 1959 and P. maternus Bray & Justine, 2006 from E. coioides and Prosorhynchus platycephali (Yamaguti, 1934) Srivastava, 1938 from Ambiserrula jugosa (McCulloch) and Inegocia japonica (Cuvier) (Platycephalidae). Skrjabiniella Issaitschikow, 1928 is re-recognised for new specimens of Skrjabiniella uniporus (Ozaki, 1924) n. comb. collected from Conger cinereus Rüppell (Congridae); three additional species of Prosorhynchus are considered members of this genus, two of which are synonymised with S. uniporus.


Asunto(s)
Bahías , Peces/parasitología , Trematodos/clasificación , Animales , Femenino , Masculino , Queensland , Especificidad de la Especie , Trematodos/anatomía & histología
7.
J Physiol ; 595(4): 1239-1251, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27767209

RESUMEN

KEY POINTS: We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive. Neurones in the principal olivary nucleus receive monosynaptic extra-somatic glutamatergic input from the neocortex. Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component. Small conductance calcium-activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms. Active integration of synaptic input within the inferior olive may play a central role in control of olivo-cerebellar climbing fibre signals. ABSTRACT: The inferior olive plays a critical role in motor coordination and learning by integrating diverse afferent signals to generate climbing fibre inputs to the cerebellar cortex. While it is well established that climbing fibre signals are important for motor coordination, the mechanisms by which neurones in the inferior olive integrate synaptic inputs and the roles of particular ion channels are unclear. Here, we test the hypothesis that neurones in the inferior olive actively integrate glutamatergic synaptic inputs. We demonstrate that optogenetically activated long-range synaptic inputs to the inferior olive, including projections from the motor cortex, generate rapid excitatory potentials followed by slower inhibitory potentials. Synaptic projections from the motor cortex preferentially target the principal olivary nucleus. We show that inhibitory and excitatory components of the bidirectional synaptic potentials are dependent upon AMPA (GluA) receptors, are GABAA independent, and originate from the same presynaptic axons. Consistent with models that predict active integration of synaptic inputs by inferior olive neurones, we find that the inhibitory component is reduced by blocking large conductance calcium-activated potassium channels with iberiotoxin, and is abolished by blocking small conductance calcium-activated potassium channels with apamin. Summation of excitatory components of synaptic responses to inputs at intervals ≤ 20 ms is increased by apamin, suggesting a role for the inhibitory component of glutamatergic responses in temporal integration. Our results indicate that neurones in the inferior olive implement novel rules for synaptic integration and suggest new principles for the contribution of inferior olive neurones to coordinated motor behaviours.


Asunto(s)
Núcleo Olivar/metabolismo , Receptores AMPA/metabolismo , Potenciales Sinápticos , Animales , Apamina/farmacología , Ácido Glutámico/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Ratones , Ratones Endogámicos C57BL , Corteza Motora/citología , Corteza Motora/metabolismo , Corteza Motora/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Núcleo Olivar/citología , Núcleo Olivar/fisiología , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
8.
J Physiol ; 594(22): 6547-6557, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27870120

RESUMEN

Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid-like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid-like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta-nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid-like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing.


Asunto(s)
Potenciales de Acción/fisiología , Células de Red/fisiología , Red Nerviosa/fisiología , Animales , Corteza Entorrinal/fisiología , Interneuronas/fisiología , Modelos Neurológicos , Transmisión Sináptica/fisiología
9.
Crit Care Med ; 44(6): 1082-90, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26807683

RESUMEN

OBJECTIVES: Pulmonary complications are common following hematopoietic stem cell transplantation. Numerous idiopathic post-transplantation pulmonary syndromes have been described. Patients at the severe end of this spectrum may present with hypoxemic respiratory failure and pulmonary infiltrates, meeting criteria for acute respiratory distress syndrome. The incidence and outcomes of acute respiratory distress syndrome in this setting are poorly characterized. DESIGN: Retrospective cohort study. SETTING: Mayo Clinic, Rochester, MN. PATIENTS: Patients undergoing autologous and allogeneic hematopoietic stem cell transplantation between January 1, 2005, and December 31, 2012. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients were screened for acute respiratory distress syndrome development within 1 year of hematopoietic stem cell transplantation. Acute respiratory distress syndrome adjudication was performed in accordance with the 2012 Berlin criteria. In total, 133 cases of acute respiratory distress syndrome developed in 2,635 patients undergoing hematopoietic stem cell transplantation (5.0%). Acute respiratory distress syndrome developed in 75 patients (15.6%) undergoing allogeneic hematopoietic stem cell transplantation and 58 patients (2.7%) undergoing autologous hematopoietic stem cell transplantation. Median time to acute respiratory distress syndrome development was 55.4 days (interquartile range, 15.1-139 d) in allogeneic hematopoietic stem cell transplantation and 14.2 days (interquartile range, 10.5-124 d) in autologous hematopoietic stem cell transplantation. Twenty-eight-day mortality was 46.6%. At 12 months following hematopoietic stem cell transplantation, 89 patients (66.9%) who developed acute respiratory distress syndrome had died. Only 7 of 133 acute respiratory distress syndrome cases met criteria for engraftment syndrome and 15 for diffuse alveolar hemorrhage. CONCLUSIONS: Acute respiratory distress syndrome is a frequent complication following hematopoietic stem cell transplantation, dramatically influencing patient-important outcomes. Most cases of acute respiratory distress syndrome following hematopoietic stem cell transplantation do not meet criteria for a more specific post-transplantation pulmonary syndrome. These findings highlight the need to better understand the risk factors underlying acute respiratory distress syndrome in this population, thereby facilitating the development of effective prevention strategies.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/efectos adversos , Síndrome de Dificultad Respiratoria/epidemiología , Adulto , Anciano , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Minnesota/epidemiología , Pronóstico , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/mortalidad , Estudios Retrospectivos , Factores de Tiempo , Trasplante Autólogo/estadística & datos numéricos , Trasplante Homólogo/estadística & datos numéricos
11.
PLoS Comput Biol ; 11(1): e1004032, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25615592

RESUMEN

Neural circuits in the medial entorhinal cortex (MEC) encode an animal's position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations.


Asunto(s)
Corteza Entorrinal/química , Corteza Entorrinal/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Corteza Entorrinal/anatomía & histología , Corteza Entorrinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen Molecular/métodos , Especificidad de Órganos/fisiología
12.
Syst Parasitol ; 93(3): 295-306, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26898592

RESUMEN

To date, morphological analysis has been the cornerstone to trematode systematics. However, since the late-1980s we have seen an increased integration of genetic data to overcome problems encountered when morphological data are considered in isolation. Here, we provide advice regarding the 'best molecular practice' for trematode taxonomy and systematic studies, in an attempt to help unify the field and provide a solid foundation to underpin future work. Emphasis is placed on defining the study goals and recommendations are made regarding sample preservation, extraction methods, and the submission of molecular vouchers. We advocate generating sequence data from all parasite species/host species/geographic location combinations and stress the importance of selecting two independently evolving loci (one ribosomal and one mitochondrial marker). We recommend that loci should be chosen to provide genetic variation suitable to address the question at hand and for which sufficient 'useful' comparative sequence data already exist. Quality control of the molecular data via using proof-reading Taq polymerase, sequencing PCR amplicons using both forward and reverse primers, ensuring that a minimum of 85% overlap exists when constructing consensus sequences, and checking electropherograms by eye is stressed. We advise that all genetic results are best interpreted using a holistic biological approach, which considers morphology, host identity, collection locality, and ecology. Finally, we consider what advances next-generation sequencing holds for trematode taxonomy and systematics.


Asunto(s)
Clasificación/métodos , Técnicas Genéticas , Filogenia , Investigación/tendencias , Trematodos/clasificación , Trematodos/genética , Animales , Técnicas Genéticas/normas , Técnicas Genéticas/tendencias , Variación Genética
13.
Am J Med Genet B Neuropsychiatr Genet ; 171(6): 806-14, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27004590

RESUMEN

Chromosome 10q24.32-q24.33 is one of the most robustly supported risk loci to emerge from genome-wide association studies (GWAS) of schizophrenia. However, extensive linkage disequilibrium makes it difficult to distinguish the actual susceptibility gene(s) at the locus, limiting its value for improving biological understanding of the condition. In the absence of coding changes that can account for the association, risk is likely conferred by altered regulation of one or more genes in the region. We, therefore, used highly sensitive measures of allele-specific expression to assess cis-regulatory effects associated with the two best-supported schizophrenia risk variants (SNP rs11191419 and indel ch10_104957618_I/rs202213518) on the primary positional candidates BORCS7, AS3MT, CNNM2, and NT5C2 in the human brain. Heterozygosity at rs11191419 was associated with increased allelic expression of BORCS7 and AS3MT in the fetal and adult brain, and with reduced allelic expression of NT5C2 in the adult brain. Heterozygosity at ch10_104957618_I was associated with reduced allelic expression of NT5C2 in both the fetal and adult brain. Comparisons between cDNA ratios in heterozygotes and homozygotes for the risk alleles indicated that cis-effects on NT5C2 expression in the adult dorsolateral prefrontal cortex could be largely accounted for by genotype at these two risk variants. While not excluding effects on other genes in the region, this study implicates altered neural expression of BORCS7, AS3MT, and NT5C2 in susceptibility to schizophrenia arising from genetic variation at the chromosome 10q24 locus. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.


Asunto(s)
5'-Nucleotidasa/genética , Proteínas Portadoras/genética , Cromosomas Humanos Par 10/genética , 5'-Nucleotidasa/metabolismo , Adulto , Alelos , Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión , Ciclinas/genética , Ciclinas/metabolismo , Proteínas del Citoesqueleto , Expresión Génica/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Mutación INDEL/genética , Desequilibrio de Ligamiento/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Esquizofrenia/genética
14.
J Neurosci ; 34(50): 16739-43, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25505326

RESUMEN

The medial septum (MS) is required for theta rhythmic oscillations and grid cell firing in the medial entorhinal cortex (MEC). While GABAergic, glutamatergic, and cholinergic neurons project from the MS to the MEC, their synaptic targets are unknown. To investigate whether MS neurons innervate specific layers and cell types in the MEC, we expressed channelrhodopsin-2 in mouse MS neurons and used patch-clamp recording in brain slices to determine the response to light activation of identified cells in the MEC. Following activation of MS axons, we observed fast monosynaptic GABAergic IPSPs in the majority (>60%) of fast-spiking (FS) and low-threshold-spiking (LTS) interneurons in all layers of the MEC, but in only 1.5% of nonstellate principal cells (NSPCs) and in no stellate cells. We also observed fast glutamatergic responses to MS activation in a minority (<5%) of NSPCs, FS, and LTS interneurons. During stimulation of MS inputs at theta frequency (10 Hz), the amplitude of GABAergic IPSPs was maintained, and spike output from LTS and FS interneurons was entrained at low (25-60 Hz) and high (60-180 Hz) gamma frequencies, respectively. By demonstrating cell type-specific targeting of the GABAergic projection from the MS to the MEC, our results support the idea that the MS controls theta frequency activity in the MEC through coordination of inhibitory circuits.


Asunto(s)
Corteza Entorrinal/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Inhibición Neural/fisiología , Núcleos Septales/fisiología , Animales , Corteza Entorrinal/citología , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Núcleos Septales/citología
15.
J Neural Transm (Vienna) ; 122(10): 1499-508, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26021735

RESUMEN

Brain banks allow researchers access to tissue from well-characterised neurodegenerative disease cases. Fixed tissue employed for diagnosis is often not appropriate for research and frozen tissue is therefore made available. Many brain banks use a protocol where half the brain is fixed and half frozen. Recently a study has shown that there can be asymmetry in protein deposition between the hemispheres especially with tau and TDP-43. We aimed to test this hypothesis by prospectively taking bilateral cortical blocks from 30 brains on arrival, and immunostaining to assess the degree of asymmetry. In 6 out 14 cases of AD (Alzheimer's Disease) (Modified Braak Stage V-VI), there was some asymmetrical staining for tau. In 2 cases, there was moderate discrepancy for tau staining between left and right calcarine cortices. However, careful analysis in both these cases revealed discrepancies in tau staining in adjacent regions even on the same side. The α-synuclein staining showed asymmetry in one case only, the Aß showed only mild asymmetry in 3 cases of AD. The TDP-43 pathology appeared symmetrical in the 2 cases of frontotemporal lobar degeneration with motor neurone disease, but there was asymmetry noted when seen in conjunction with AD. In conclusion, there is the potential for asymmetrical pathology in neurodegenerative diseases and caution should be maintained when freezing half and fixing half of the brain in neurodegenerative diseases. Nevertheless, marked variability in staining can also be identified in adjacent cortical areas so there is no guarantee that an alternative strategy would be superior.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Lateralidad Funcional , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Péptidos beta-Amiloides/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Inmunohistoquímica , Estudios Prospectivos , Bancos de Tejidos , Conservación de Tejido/métodos , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
16.
J Infect Dis ; 210(9): 1431-4, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24795483

RESUMEN

The interactions between gastrointestinal parasitic helminths and commensal bacteria are likely to play a pivotal role in the establishment of host-parasite cross-talk, ultimately shaping the development of the intestinal immune system. However, little information is available on the impact of infections by gastrointestinal helminths on the bacterial communities inhabiting the human gut. We used 16S rRNA gene amplification and pyrosequencing to characterize, for the first time to our knowledge, the differences in composition and relative abundance of fecal microbial communities in human subjects prior to and following experimental infection with the blood-feeding intestinal hookworm, Necator americanus. Our data show that, although hookworm infection leads to a minor increase in microbial species richness, no detectable effect is observed on community structure, diversity or relative abundance of individual bacterial species.


Asunto(s)
Tracto Gastrointestinal/microbiología , Microbiota , Necator americanus , Necatoriasis/microbiología , Animales , Heces/microbiología , Heces/parasitología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/parasitología , Humanos , Microbiota/fisiología , Necatoriasis/inmunología
17.
J Neurosci ; 33(34): 13583-99, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23966682

RESUMEN

In many cortical neurons, HCN1 channels are the major contributors to Ih, the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of Ih in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of Ih decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or Ih blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question.


Asunto(s)
Potenciales de Acción/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Función Ejecutiva/fisiología , Memoria/fisiología , Neuronas/fisiología , Canales de Potasio/metabolismo , Corteza Prefrontal/citología , Potenciales de Acción/efectos de los fármacos , Animales , Conducta de Elección/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Técnicas In Vitro , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Canales de Potasio/genética , Aprendizaje Seriado/efectos de los fármacos , Aprendizaje Seriado/fisiología , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética
18.
J Neurophysiol ; 112(11): 2756-78, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25122704

RESUMEN

Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15-30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension.


Asunto(s)
Potenciales de Acción , Hipertensión/fisiopatología , Neuronas/fisiología , Músculos Respiratorios/inervación , Sistema Nervioso Simpático/fisiología , Vasoconstricción , Animales , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Corazón/inervación , Corazón/fisiología , Masculino , Modelos Neurológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Músculos Respiratorios/irrigación sanguínea , Músculos Respiratorios/fisiología , Asta Lateral de la Médula Espinal/citología , Asta Lateral de la Médula Espinal/fisiología , Sistema Nervioso Simpático/citología
19.
Elife ; 122024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546203

RESUMEN

Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.


Asunto(s)
Señales (Psicología) , Corteza Entorrinal , Ratones , Animales , Potenciales de Acción , Percepción Espacial , Modelos Neurológicos
20.
J Comp Neurol ; 532(1): e25567, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38289193

RESUMEN

Betz cells, named in honor of Volodymyr Betz (1834-1894), who described them as "giant pyramids" in the primary motor cortex of primates and other mammalian species, are layer V extratelencephalic projection (ETP) neurons that directly innervate α-motoneurons of the brainstem and spinal cord. Despite their large volume and circumferential dendritic architecture, to date, no single molecular criterion has been established that unequivocally distinguishes adult Betz cells from other layer V ETP neurons. In primates, transcriptional signatures suggest the presence of at least two ETP neuron clusters that contain mature Betz cells; these are characterized by an abundance of axon guidance and oxidative phosphorylation transcripts. How neurodevelopmental programs drive the distinct positional and morphological features of Betz cells in humans remains unknown. Betz cells display a distinct biphasic firing pattern involving early cessation of firing followed by delayed sustained acceleration in spike frequency and magnitude. Few cell type-specific transcripts and electrophysiological characteristics are conserved between rodent layer V ETP neurons of the motor cortex and primate Betz cells. This has implications for the modeling of disorders that affect the motor cortex in humans, such as amyotrophic lateral sclerosis (ALS). Perhaps vulnerability to ALS is linked to the evolution of neural networks for fine motor control reflected in the distinct morphomolecular architecture of the human motor cortex, including Betz cells. Here, we discuss histological, molecular, and functional data concerning the position of Betz cells in the emerging taxonomy of neurons across diverse species and their role in neurological disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Adulto , Humanos , Animales , Células Piramidales , Neuronas Motoras , Primates , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA