Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(16): 7555-7566, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32233475

RESUMEN

Racemates have recently received attention as nonlinear optical and piezoelectric materials. Here, a machine-learning-assisted composition space approach was applied to synthesize the missing M = Ti, Zr members of the Δ,Λ-[Cu(bpy)2(H2O)]2[MF6]2·3H2O (M = Ti, Zr, Hf; bpy = 2,2'-bipyridine) family (space group: Pna21). In each (CuO, MO2)/bpy/HF(aq) (M = Ti, Zr, Hf) system, the polar noncentrosymmetric racemate (M-NCS) forms in competition with a centrosymmetric one-dimensional chain compound (M-CS) based on alternating Cu(bpy)(H2O)22+ and MF62- basic building units (space groups: Ti-CS (Pnma), Zr-CS (P1̅), Hf-CS (P2/n)). Machine learning models were trained on reaction parameters to gain unbiased insight into the underlying statistical trends in each composition space. A human-interpretable decision tree shows that phase selection is driven primarily by the bpy:CuO molar ratio for reactions containing Zr or Hf, and predicts that formation of the Ti-NCS compound requires that the amount of HF present be decreased to raise the pH, which we verified experimentally. Predictive leave-one-metal-out (LOO) models further confirm that behavior in the Ti system is distinct from that of the Zr and Hf systems. The chemical origin of this distinction was probed via fluorine K-edge X-ray absorption spectroscopy. Pre-edge features in the F1s X-ray absorption spectra reveal the strong ligand-to-metal π bonding between Ti(3d - t2g) and F(2p) states that distinguishes the TiF62- anion from the ZrF62- and HfF62- anions.

2.
Inorg Chem ; 57(20): 12900-12907, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30277388

RESUMEN

A comprehensive study on the effects of experimental parameters on the composition and size of manganese oxide nanocrystals was completed using colloidal chemistry. The reactions studied involved the thermolysis of Mn2+ acetate and Mn3+ acetylacetonate in oleylamine. Temperature was found to be the dominant factor affecting the composition and size of the products. Reactions completed below 200 °C favored the formation of nanocrystals smaller than 20 nm, with the presence of even impurity amounts of oxidizing agents leading to the formation of Mn3O4. Nanocrystals of MnO could only be synthesized below 200 °C if Mn2+ acetate was used, and the reaction was carefully controlled to have no O2 and H2O contamination. In turn, particle growth was rapid above this temperature. In this case, regardless of the oxidizing agents used or oxidation state of the Mn precursor, nanocrystals of MnO formed after annealing for at least 1 h at temperatures higher than 200 °C. This finding suggests the role of oleylamine as solvent, surfactant, and reducing agent at sufficiently high annealing temperatures. These results increase the understanding of redox stability of manganese during the colloidal synthesis of semiconductor metal oxide nanocrystals.

3.
Langmuir ; 33(37): 9398-9406, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28636826

RESUMEN

The energy density of rechargeable batteries utilizing metals as anodes surpasses that of Li ion batteries, which employ carbon instead. Among possible metals, magnesium represents a potential alternative to the conventional choice, lithium, in terms of storage density, safety, stability, and cost. However, a major obstacle for metal-based batteries is the identification of electrolytes that show reversible deposition/dissolution of the metal anode and support reversible intercalation of ions into a cathode. Traditional Grignard-based Mg electrolytes are excellent with respect to the reversible deposition of Mg, but their limited anodic stability and compatibility with oxide cathodes hinder their applicability in Mg batteries with higher voltage. Non-Grignard electrolytes, which consist of ethereal solutions of magnesium(II) bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2), remain fairly stable near the potential of Mg deposition. The slight reactivity of these electrolytes toward Mg metal can be remedied by the addition of surface-protecting agents, such as MgCl2. Hence, ethereal solutions of Mg(TFSI)2 salt with MgCl2 as an additive have been suggested as a representative non-Grignard Mg electrolyte. In this work, the degradation mechanisms of a Mg metal anode in the TFSI-based electrolyte were studied using a current density of 1 mA cm-2 and an areal capacity of ∼0.4 mAh cm-2, which is close to those used in practical applications. The degradation mechanisms identified include the corrosion of Mg metal, which causes the loss of electronic pathways and mechanical integrity, the nonuniform deposition of Mg, and the decomposition of TFSI- anions. This study not only represents an assessment of the behavior of Mg metal anodes at practical current density and areal capacity but also details the outcomes of interfacial passivation, which was detected by simple cyclic voltammetry experiments. This study also points out the absolute absence of any passivation at the electrode-electrolyte interface for the premise of developing electrolytes compatible with a metal anode.

4.
ACS Appl Mater Interfaces ; 14(3): 4022-4034, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35019264

RESUMEN

A series of hybrid electrolytes composed of diglyme and ionic liquids (ILs) have been investigated for Na-O2 batteries, as a strategy to control the growth and purity of the discharge products during battery operation. The dependence of chemical composition of the ILs on the size, purity, and distribution of the discharge products has been evaluated using a wide range of experimental and spectroscopic techniques. The morphology and composition of the discharge products found in the Na-O2 cells have a complex dependence on the physicochemical properties of the electrolyte as well as the speciation of the Na+ and superoxide radical anion. All of these factors control the nucleation and growth phenomena as well as electrolyte stability. Smaller discharge particle sizes and largely homogeneous (2.7 ± 0.5 µm) sodium superoxide (NaO2) crystals with only 9% of side products were found in the hybrid electrolyte containing the pyrrolidinium IL with a linear alkyl chain. The long-term cyclability of Na-O2 batteries with high Coulombic efficiency (>90%) was obtained for this electrolyte with fewer side products (20 cycles at 0.5 mA h cm-2). In contrast, rapid failure was observed with the use of the phosphonium-based electrolyte, which strongly stabilizes the superoxide anion. A high discharge capacity (4.46 mA h cm-2) was obtained for the hybrid electrolyte containing the pyrrolidinium-based IL bearing a linear alkyl chain with a slightly lower value (3.11 mA h cm-2) being obtained when the hybrid electrolyte contained similar pyrrolidinium-based IL bearing an alkoxy chain.

5.
Nanoscale ; 11(2): 639-646, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30564812

RESUMEN

Chromium oxides with the spinel structure have been predicted to be promising high voltage cathode materials in magnesium batteries. Perennial challenges involving the mobility of Mg2+ and reaction kinetics can be circumvented by nano-sizing the materials in order to reduce diffusion distances, and by using elevated temperatures to overcome activation energy barriers. Herein, ordered 7 nm crystals of spinel-type MgCr2O4 were synthesized by a conventional batch hydrothermal method. In comparison, the relatively underexplored Continuous Hydrothermal Flow Synthesis (CHFS) method was used to make highly defective sub-5 nm MgCr2O4 crystals. When these materials were made into electrodes, they were shown to possess markedly different electrochemical behavior in a Mg2+ ionic liquid electrolyte, at moderate temperature (110 °C). The anodic activity of the ordered nanocrystals was attributed to surface reactions, most likely involving the electrolyte. In contrast, evidence was gathered regarding the reversible bulk deintercalation of Mg2+ from the nanocrystals made by CHFS. This work highlights the impact on electrochemical behavior of a precise control of size and crystal structure of MgCr2O4. It advances the understanding and design of new cathode materials for Mg-based batteries.

6.
Sci Rep ; 7: 40036, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067301

RESUMEN

A new family of fluorine-free solid-polymer electrolytes, for use in sodium-ion battery applications, is presented. Three novel sodium salts withdiffuse negative charges: sodium pentacyanopropenide (NaPCPI), sodium 2,3,4,5-tetracyanopirolate (NaTCP) and sodium 2,4,5-tricyanoimidazolate (NaTIM) were designed andtested in a poly(ethylene oxide) (PEO) matrix as polymer electrolytes for anall-solid sodium-ion battery. Due to unique, non-covalent structural configurations of anions, improved ionic conductivities were observed. As an example, "liquid-like" high conductivities (>1 mS cm-1) were obtained above 70 °C for solid-polymer electrolyte with a PEO to NaTCP molar ratio of 16:1. All presented salts showed high thermal stability and suitable windows of electrochemical stability between 3 and 5 V. These new anions open a new class of compounds with non-covalent structure for electrolytes system applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA