Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 176(4): 816-830.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595451

RESUMEN

The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.


Asunto(s)
Momento de Replicación del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina , ADN/genética , Momento de Replicación del ADN/genética , Células Madre Embrionarias , Elementos de Facilitación Genéticos/genética , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal
2.
Cell ; 175(1): 38-40, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241613

RESUMEN

TAD boundaries are insulators of genomic neighborhoods. In this issue, Sun et al. show that disease-associated tandem repeats are located to TAD boundaries and affect their insulation. The findings have important implications for TAD function and mechanisms underlying diseases such as fragile X syndrome and Huntington's disease.


Asunto(s)
Cromatina , Síndrome del Cromosoma X Frágil/genética , Genoma , Genómica , Humanos , Repeticiones de Microsatélite
3.
Cell ; 169(5): 930-944.e22, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525758

RESUMEN

The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Furthermore, our data support that CTCF mediates transcriptional insulator function through enhancer blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding, these results provide new fundamental insights into the rules governing mammalian genome organization.


Asunto(s)
Cromosomas de los Mamíferos/química , Animales , Factor de Unión a CCCTC , Ciclo Celular , Cromatina/metabolismo , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Ácidos Indolacéticos/farmacología , Ratones , Proteínas Represoras/metabolismo , Transcripción Genética
4.
Mol Cell ; 83(9): 1377-1392.e6, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37146570

RESUMEN

Although population-level analyses revealed significant roles for CTCF and cohesin in mammalian genome organization, their contributions at the single-cell level remain incompletely understood. Here, we used a super-resolution microscopy approach to measure the effects of removal of CTCF or cohesin in mouse embryonic stem cells. Single-chromosome traces revealed cohesin-dependent loops, frequently stacked at their loop anchors forming multi-way contacts (hubs), bridging across TAD boundaries. Despite these bridging interactions, chromatin in intervening TADs was not intermixed, remaining separated in distinct loops around the hub. At the multi-TAD scale, steric effects from loop stacking insulated local chromatin from ultra-long range (>4 Mb) contacts. Upon cohesin removal, the chromosomes were more disordered and increased cell-cell variability in gene expression. Our data revise the TAD-centric understanding of CTCF and cohesin and provide a multi-scale, structural picture of how they organize the genome on the single-cell level through distinct contributions to loop stacking.


Asunto(s)
Cromatina , Cromosomas , Animales , Ratones , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mamíferos/metabolismo
5.
Mol Cell ; 82(1): 10-12, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995506

RESUMEN

Gjaltema et al. (2021) perform systematic screens to identify the long-sought cis-regulatory elements of Xist. They discover that distal elements give Xist a boost as cells exit pluripotency, while proximal elements restrict Xist expression to cells with two X chromosomes.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Genómica , ARN Largo no Codificante/genética , ARN no Traducido , Cromosoma X , Inactivación del Cromosoma X/genética
6.
Nat Rev Genet ; 24(2): 73-85, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36180596

RESUMEN

Chromatin folds into dynamic loops that often span hundreds of kilobases and physically wire distant loci together for gene regulation. These loops are continuously created, extended and positioned by structural maintenance of chromosomes (SMC) protein complexes, such as condensin and cohesin, and their regulators, including CTCF, in a highly dynamic process known as loop extrusion. Genetic loss of extrusion factors is lethal, complicating their study. Inducible protein degradation technologies enable the depletion of loop extrusion factors within hours, leading to the rapid reconfiguration of chromatin folding. Here, we review how these technologies have changed our understanding of genome organization, upsetting long-held beliefs on its role in transcription. Finally, we examine recent models that attempt to reconcile observations after chronic versus acute perturbations, and discuss future developments in this rapidly developing field of research.


Asunto(s)
Cromatina , Cromosomas , Cromosomas/genética , Regulación de la Expresión Génica , Genoma , Proteínas de Ciclo Celular/genética
7.
Cell ; 157(4): 950-63, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813616

RESUMEN

A new level of chromosome organization, topologically associating domains (TADs), was recently uncovered by chromosome conformation capture (3C) techniques. To explore TAD structure and function, we developed a polymer model that can extract the full repertoire of chromatin conformations within TADs from population-based 3C data. This model predicts actual physical distances and to what extent chromosomal contacts vary between cells. It also identifies interactions within single TADs that stabilize boundaries between TADs and allows us to identify and genetically validate key structural elements within TADs. Combining the model's predictions with high-resolution DNA FISH and quantitative RNA FISH for TADs within the X-inactivation center (Xic), we dissect the relationship between transcription and spatial proximity to cis-regulatory elements. We demonstrate that contacts between potential regulatory elements occur in the context of fluctuating structures rather than stable loops and propose that such fluctuations may contribute to asymmetric expression in the Xic during X inactivation.


Asunto(s)
Cromosomas/química , Transcripción Genética , Inactivación del Cromosoma X , Animales , Cromatina/química , Femenino , Hibridación Fluorescente in Situ , Masculino , Ratones , Modelos Biológicos , Modelos Moleculares , ARN Largo no Codificante/metabolismo
8.
Mol Cell ; 81(15): 3043-3045, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358457

RESUMEN

Neguembor et al. (2021) use super-resolution microscopy to illuminate genome packaging inside the cell nucleus. They discover that transcription and topoisomerases protect chromatin from collapsing in a crumpled state refractory to DNA loop extrusion by cohesin proteins.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , ADN/genética , Humanos , Cohesinas
9.
Mol Cell ; 76(3): 412-422.e5, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31522988

RESUMEN

The function of the CCCTC-binding factor (CTCF) in the organization of the genome has become an important area of investigation, but the mechanisms by which CTCF dynamically contributes to genome organization are not clear. We previously discovered that CTCF binds to large numbers of endogenous RNAs, promoting its self-association. In this regard, we now report two independent features that disrupt CTCF association with chromatin: inhibition of transcription and disruption of CTCF-RNA interactions through mutations of 2 of its 11 zinc fingers that are not required for CTCF binding to its cognate DNA site: zinc finger 1 (ZF1) or zinc finger 10 (ZF10). These mutations alter gene expression profiles as CTCF mutants lose their ability to form chromatin loops and thus the ability to insulate chromatin domains and to mediate CTCF long-range genomic interactions. Our results point to the importance of CTCF-mediated RNA interactions as a structural component of genome organization.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , ARN/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/genética , Línea Celular , Cromatina/química , Cromatina/genética , Ratones , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/genética , Relación Estructura-Actividad , Transcripción Genética , Dedos de Zinc
10.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35502750

RESUMEN

The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina , Comunicación , Expresión Génica , Genoma , Ratones , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética
11.
Cell ; 139(5): 865-7, 2009 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19945374

RESUMEN

How do mammals count their X chromosomes and keep only one X active per cell? In this issue, Jonkers et al. (2009) show that Rnf12/RLIM, encoded by the X-linked gene Rnf12, induces X chromosome inactivation only when present above a certain threshold, a condition fulfilled when at least two Xs are active.


Asunto(s)
Inactivación del Cromosoma X , Cromosoma X/metabolismo , Animales , Dosificación de Gen , Genes Ligados a X , Humanos , Proteínas Represoras/metabolismo
12.
Immunity ; 34(3): 303-14, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21435585

RESUMEN

T cell fate is associated with mutually exclusive expression of CD4 or CD8 in helper and cytotoxic T cells, respectively. How expression of one locus is temporally coordinated with repression of the other has been a long-standing enigma, though we know RUNX transcription factors activate the Cd8 locus, silence the Cd4 locus, and repress the Zbtb7b locus (encoding the transcription factor ThPOK), which is required for CD4 expression. Here we found that nuclear organization was altered by interplay among members of this transcription factor circuitry: RUNX binding mediated association of Cd4 and Cd8 whereas ThPOK binding kept the loci apart. Moreover, targeted deletions within Cd4 modulated CD8 expression and pericentromeric repositioning of Cd8. Communication between Cd4 and Cd8 thus appears to enable long-range epigenetic regulation to ensure that expression of one excludes the other in mature CD4 or CD8 single-positive (SP) cells.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Subunidades alfa del Factor de Unión al Sitio Principal/inmunología , Regulación de la Expresión Génica/inmunología , Animales , Epigenómica , Citometría de Flujo , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL
13.
Annu Rev Genomics Hum Genet ; 17: 17-43, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27089971

RESUMEN

Genome function, replication, integrity, and propagation rely on the dynamic structural organization of chromosomes during the cell cycle. Genome folding in interphase provides regulatory segmentation for appropriate transcriptional control, facilitates ordered genome replication, and contributes to genome integrity by limiting illegitimate recombination. Here, we review recent high-resolution chromosome conformation capture and functional studies that have informed models of the spatial and regulatory compartmentalization of mammalian genomes, and discuss mechanistic models for how CTCF and cohesin control the functional architecture of mammalian chromosomes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas/genética , Proteínas Represoras/genética , Transcripción Genética , Factor de Unión a CCCTC , Regulación de la Expresión Génica , Genoma Humano , Humanos , Cohesinas
14.
Nature ; 501(7466): 227-31, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23883933

RESUMEN

It is becoming increasingly clear that the shape of the genome importantly influences transcription regulation. Pluripotent stem cells such as embryonic stem cells were recently shown to organize their chromosomes into topological domains that are largely invariant between cell types. Here we combine chromatin conformation capture technologies with chromatin factor binding data to demonstrate that inactive chromatin is unusually disorganized in pluripotent stem-cell nuclei. We show that gene promoters engage in contacts between topological domains in a largely tissue-independent manner, whereas enhancers have a more tissue-restricted interaction profile. Notably, genomic clusters of pluripotency factor binding sites find each other very efficiently, in a manner that is strictly pluripotent-stem-cell-specific, dependent on the presence of Oct4 and Nanog protein and inducible after artificial recruitment of Nanog to a selected chromosomal site. We conclude that pluripotent stem cells have a unique higher-order genome structure shaped by pluripotency factors. We speculate that this interactome enhances the robustness of the pluripotent state.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Posicionamiento de Cromosoma , Genoma/genética , Imagenología Tridimensional , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Sitios de Unión , Línea Celular , Cromatina/genética , Inmunoprecipitación de Cromatina , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Imagen Molecular , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Especificidad de Órganos , Regiones Promotoras Genéticas , Factores de Transcripción SOXB1/metabolismo
15.
Genes Dev ; 25(13): 1371-83, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21690198

RESUMEN

Three-dimensional topology of DNA in the cell nucleus provides a level of transcription regulation beyond the sequence of the linear DNA. To study the relationship between the transcriptional activity and the spatial environment of a gene, we used allele-specific chromosome conformation capture-on-chip (4C) technology to produce high-resolution topology maps of the active and inactive X chromosomes in female cells. We found that loci on the active X form multiple long-range interactions, with spatial segregation of active and inactive chromatin. On the inactive X, silenced loci lack preferred interactions, suggesting a unique random organization inside the inactive territory. However, escapees, among which is Xist, are engaged in long-range contacts with each other, enabling identification of novel escapees. Deletion of Xist results in partial refolding of the inactive X into a conformation resembling the active X without affecting gene silencing or DNA methylation. Our data point to a role for Xist RNA in shaping the conformation of the inactive X chromosome at least partially independent of transcription.


Asunto(s)
Estructuras Cromosómicas , ARN no Traducido/genética , Cromosoma X/química , Animales , Femenino , Genes Ligados a X/genética , Ratones , ARN Largo no Codificante , ARN no Traducido/metabolismo
16.
Nature ; 485(7398): 381-5, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22495304

RESUMEN

In eukaryotes transcriptional regulation often involves multiple long-range elements and is influenced by the genomic environment. A prime example of this concerns the mouse X-inactivation centre (Xic), which orchestrates the initiation of X-chromosome inactivation (XCI) by controlling the expression of the non-protein-coding Xist transcript. The extent of Xic sequences required for the proper regulation of Xist remains unknown. Here we use chromosome conformation capture carbon-copy (5C) and super-resolution microscopy to analyse the spatial organization of a 4.5-megabases (Mb) region including Xist. We discover a series of discrete 200-kilobase to 1 Mb topologically associating domains (TADs), present both before and after cell differentiation and on the active and inactive X. TADs align with, but do not rely on, several domain-wide features of the epigenome, such as H3K27me3 or H3K9me2 blocks and lamina-associated domains. TADs also align with coordinately regulated gene clusters. Disruption of a TAD boundary causes ectopic chromosomal contacts and long-range transcriptional misregulation. The Xist/Tsix sense/antisense unit illustrates how TADs enable the spatial segregation of oppositely regulated chromosomal neighbourhoods, with the respective promoters of Xist and Tsix lying in adjacent TADs, each containing their known positive regulators. We identify a novel distal regulatory region of Tsix within its TAD, which produces a long intervening RNA, Linx. In addition to uncovering a new principle of cis-regulatory architecture of mammalian chromosomes, our study sets the stage for the full genetic dissection of the X-inactivation centre.


Asunto(s)
ARN no Traducido/genética , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Animales , Diferenciación Celular , ADN Intergénico/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Epigenómica , Femenino , Fibroblastos , Regulación de la Expresión Génica , Histonas/metabolismo , Hibridación Fluorescente in Situ , Masculino , Metilación , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante , Transcriptoma , Cromosoma X/química
17.
Circ Res ; 116(4): 700-14, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25677518

RESUMEN

Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors choreograph gene expression at each stage of differentiation by interacting with cofactors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease, and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac transcription factors, cis-regulatory elements, and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program.


Asunto(s)
Corazón/crecimiento & desarrollo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Corazón/embriología , Humanos , Morfogénesis , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Activación Transcripcional
18.
Nat Rev Genet ; 12(6): 429-42, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21587299

RESUMEN

X-chromosome inactivation (XCI) ensures dosage compensation in mammals and is a paradigm for allele-specific gene expression on a chromosome-wide scale. Important insights have been made into the developmental dynamics of this process. Recent studies have identified several cis- and trans-acting factors that regulate the initiation of XCI via the X-inactivation centre. Such studies have shed light on the relationship between XCI and pluripotency. They have also revealed the existence of dosage-dependent activators that trigger XCI when more than one X chromosome is present, as well as possible mechanisms underlying the monoallelic regulation of this process. The recent discovery of the plasticity of the inactive state during early development, or during cloning, and induced pluripotency have also contributed to the X chromosome becoming a gold standard in reprogramming studies.


Asunto(s)
Cromosomas Humanos X , Inactivación del Cromosoma X , Alelos , Animales , Diferenciación Celular , Cromosomas/ultraestructura , Compensación de Dosificación (Genética) , Células Madre Embrionarias/citología , Regulación de la Expresión Génica , Humanos , Ratones , Modelos Genéticos , ARN Largo no Codificante , ARN no Traducido/genética
19.
Bioessays ; 35(9): 818-28, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23832846

RESUMEN

We discuss here a series of testable hypotheses concerning the role of chromosome folding into topologically associating domains (TADs). Several lines of evidence suggest that segmental packaging of chromosomal neighborhoods may underlie features of chromatin that span large domains, such as heterochromatin blocks, association with the nuclear lamina and replication timing. By defining which DNA elements preferentially contact each other, the segmentation of chromosomes into TADs may also underlie many properties of long-range transcriptional regulation. Several observations suggest that TADs can indeed provide a structural basis to regulatory landscapes, by controlling enhancer sharing and allocation. We also discuss how TADs may shape the evolution of chromosomes, by causing maintenance of synteny over large chromosomal segments. Finally we suggest a series of experiments to challenge these ideas and provide concrete examples illustrating how they could be practically applied.


Asunto(s)
Cromatina/química , Cromatina/genética , Regulación de la Expresión Génica , Animales , ADN/genética , Momento de Replicación del ADN , Evolución Molecular , Genoma , Humanos , Regiones Promotoras Genéticas , Activación Transcripcional
20.
bioRxiv ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38370764

RESUMEN

Although only a fraction of CTCF motifs are bound in any cell type, and approximately half of the occupied sites overlap cohesin, the mechanisms underlying cell-type specific attachment and ability to function as a chromatin organizer remain unknown. To investigate the relationship between CTCF and chromatin we applied a combination of imaging, structural and molecular approaches, using a series of brain and cancer associated CTCF mutations that act as CTCF perturbations. We demonstrate that binding and the functional impact of WT and mutant CTCF depend not only on the unique properties of each protein, but also on the genomic context of bound sites. Our studies also highlight the reciprocal relationship between CTCF and chromatin, demonstrating that the unique binding properties of WT and mutant proteins have a distinct impact on accessibility, TF binding, cohesin overlap, chromatin interactivity and gene expression programs, providing insight into their cancer and brain related effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA