Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int Wound J ; 20(6): 2346-2359, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36564054

RESUMEN

Diabetic chronic wounds cause massive levels of patient suffering and economic problems worldwide. The state of chronic inflammation arises in response to a complex combination of diabetes mellitus-related pathophysiologies. Advanced treatment options are available; however, many wounds still fail to heal, exacerbating morbidity and mortality. This review describes the chronic inflammation pathophysiologies in diabetic ulcers and treatment options that may help address this dysfunction either directly or indirectly. We suggest that treatments to reduce inflammation within these complex wounds may help trigger healing.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Pie Diabético , Enfermedades de la Piel , Humanos , Complicaciones de la Diabetes/terapia , Inflamación/terapia , Cicatrización de Heridas/fisiología , Pie Diabético/terapia
2.
Sci Rep ; 13(1): 2790, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797386

RESUMEN

The similarities between fungal and mammalian cells pose inherent challenges for the development of treatments for fungal infections, due to drug crossover recognition of host drug targets by antifungal agents. Thus, there are a limited number of drug classes available for treatment. Treatment is further limited by the acquisition and dissemination of antifungal resistance which contributes to the urgent need of new therapies. Polyhexamethylene biguanide (PHMB) is a cationic antimicrobial polymer with bactericidal, parasiticidal and fungicidal activities. The antifungal mechanism of action appears to involve preferential mechanical disruption of microbial cell structures, offering an alternative to conventional antifungals. However, the antifungal mechanisms have been little studied. The aim of this study was to characterise PHMB's activities on selected yeast (Saccharomyces cerevisiae, Candida albicans) and filamentous fungal species (Fusarium oxysporum, Penicillium glabrum). Fungal membrane disruption, cell entry and intracellular localisation activities of PHMB were evaluated using viability probe entry and polymer localisation studies. We observed that PHMB initially permeabilises fungal cell membranes and then accumulates within the cytosol. Once in the cytosol, it disrupts the nuclear membrane, leading to DNA binding and fragmentation. The electrostatic interaction of PHMB with membranes suggests other intracellular organelles could be potential targets of its action. Overall, the results indicate multiple antifungal mechanisms, which may help to explain its broad-spectrum efficacy. A better understanding of PHMB's mechanism(s) of action may aid the development of improved antifungal treatment strategies.


Asunto(s)
Antiinfecciosos , Antifúngicos , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Biguanidas/farmacología , Biguanidas/uso terapéutico , Saccharomyces cerevisiae/metabolismo , Orgánulos/metabolismo , Pruebas de Sensibilidad Microbiana , Mamíferos/metabolismo
3.
Front Bioeng Biotechnol ; 9: 780328, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004642

RESUMEN

Rising global populations due to medicinal advancements increases the patient population susceptible to superficial and severe fungal infections. Fungi often implicated in these diseases includes the dermatophytes (Microsporum spp., Epidermophtyon spp., Trichophyton spp.) as well as species of the Candida spp., Aspergillosis spp. and Cryptococcus spp. genera. In addition, increasing global populations leads to increasing agricultural demands. Thus, fungal infections of preharvested crops and stored food by plant pathogens such as Magnaporthe oryzae and Fusarium oxysporum can have detrimental socioeconomic effects due to food insecurity. Current antifungal strategies are based mainly on small molecule antifungal drugs. However, these drugs are limited by poor solubility and bioavailability. Furthermore, antifungal resistance against these drugs are on the rise. Thus, antimicrobial polymers offer an alternative antifungal strategy. Antifungal polymers are characterised by cationic and hydrophobic regions where the cationic regions have been shown to interact with microbial phospholipids and membranes. These polymers can be synthetic or natural and demonstrate distinct antifungal mechanisms ranging from fungal cell membrane permeabilisation, cell membrane depolarisation or cell entry. Although the relative importance of such mechanisms is difficult to decipher. Due to the chemical properties of these polymers, they can be combined with other antimicrobial compounds including existing antifungal drugs, charcoals, lipids and metal ions to elicit synergistic effects. In some cases, antifungal polymers and nanocomposites show better antifungal effects or reduced toxicity compared to the widely used small molecule antifungal drugs. This review provides an overview of antimicrobial polymers and nanocomposites with antifungal activity and the current understanding of their antifungal mechanisms.

4.
Front Microbiol ; 8: 1518, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848527

RESUMEN

Staphylococcus aureus infection is a common cause of mastitis, reducing milk yield, affecting animal welfare and causing huge economic losses within the dairy industry. In addition to the problem of acquired drug resistance, bacterial invasion into udder cells and the formation of surface biofilms are believed to reduce antibiotic efficacy, leading to treatment failure. Here, we investigated the antimicrobial activities of enrofloxacin, an antibiotic that is commonly used in mastitis therapy and polyhexamethylene biguanide (PHMB), an antimicrobial polymer. The antimicrobial activities were tested against intracellular S. aureus in infected Mac-T cells (host cells). Also, fluorescein-tagged PHMB was used to study PHMB uptake and localization with S. aureus within the infected Mac-T cells. Anti-biofilm activities were tested by treating S. aureus biofilms and measuring effects on biofilm mass in vitro. Enrofloxacin and PHMB at 15 mg/L killed between 42 to 92 and 99.9% of intracellular S. aureus, respectively. PHMB-FITC entered and colocalized with the intracellular S. aureus, suggesting direct interaction of the drug with the bacteria inside the host cells. Enrofloxacin and PHMB at 15 mg/L reduced between 10 to 27% and 28 to 37% of biofilms' mass, respectively. The half-maximal inhibitory concentrations (IC50) obtained from a cytotoxicity assay were 345 ± 91 and 21 ± 2 mg/L for enrofloxacin and PHMB, respectively; therefore, both compounds were tolerated by the host cells at high concentrations. These findings suggest that both antimicrobials are effective against intracellular S. aureus and can disrupt biofilm structures, with PHMB being more potent against intracellular S. aureus, highlighting the potential application of PHMB in mastitis therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA