Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Peptides ; 140: 170532, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33744371

RESUMEN

OBJECTIVES: To analyse the peptidomics of mouse enteroendocrine cells (EECs) and human gastrointestinal (GI) tissue and identify novel gut derived peptides. METHODS: High resolution nano-flow liquid chromatography mass spectrometry (LC-MS/MS) was performed on (i) flow-cytometry purified NeuroD1 positive cells from mouse and homogenised human intestinal biopsies, (ii) supernatants from primary murine intestinal cultures, (iii) intestinal homogenates from mice fed high fat diet. Candidate bioactive peptides were selected on the basis of species conservation, high expression/biosynthesis in EECs and evidence of regulated secretionin vitro. Candidate novel gut-derived peptides were chronically administered to mice to assess effects on food intake and glucose tolerance. RESULTS: A large number of peptide fragments were identified from human and mouse, including known full-length gut hormones and enzymatic degradation products. EEC-specific peptides were largely from vesicular proteins, particularly prohormones, granins and processing enzymes, of which several exhibited regulated secretion in vitro. No regulated peptides were identified from previously unknown genes. High fat feeding particularly affected the distal colon, resulting in reduced peptide levels from GCG, PYY and INSL5. Of the two candidate novel peptides tested in vivo, a peptide from Chromogranin A (ChgA 435-462a) had no measurable effect, but a progastrin-derived peptide (Gast p59-79), modestly improved glucose tolerance in lean mice. CONCLUSION: LC-MS/MS peptidomic analysis of murine EECs and human GI tissue identified the spectrum of peptides produced by EECs, including a potential novel gut hormone, Gast p59-79, with minor effects on glucose tolerance.


Asunto(s)
Células Enteroendocrinas/metabolismo , Gastrinas/farmacología , Tracto Gastrointestinal/metabolismo , Prueba de Tolerancia a la Glucosa/métodos , Péptidos/metabolismo , Precursores de Proteínas/farmacología , Proteoma/metabolismo , Delgadez/tratamiento farmacológico , Animales , Células Cultivadas , Glucosa/metabolismo , Humanos , Masculino , Ratones , Modelos Animales , Péptidos/química , Proteoma/análisis , Delgadez/metabolismo
2.
Nat Commun ; 10(1): 1029, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833673

RESUMEN

Enteroendocrine cells are specialised sensory cells located in the intestinal epithelium and generate signals in response to food ingestion. Whilst traditionally considered hormone-producing cells, there is evidence that they also initiate activity in the afferent vagus nerve and thereby signal directly to the brainstem. We investigate whether enteroendocrine L-cells, well known for their production of the incretin hormone glucagon-like peptide-1 (GLP-1), also release other neuro-transmitters/modulators. We demonstrate regulated ATP release by ATP measurements in cell supernatants and by using sniffer patches that generate electrical currents upon ATP exposure. Employing purinergic receptor antagonists, we demonstrate that evoked ATP release from L-cells triggers electrical responses in neighbouring enterocytes through P2Y2 and nodose ganglion neurones in co-cultures through P2X2/3-receptors. We conclude that L-cells co-secrete ATP together with GLP-1 and PYY, and that ATP acts as an additional signal triggering vagal activation and potentially synergising with the actions of locally elevated peptide hormone concentrations.


Asunto(s)
Adenosina Trifosfato/metabolismo , Enterocitos/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Intestinos , Neuronas Aferentes/metabolismo , Vías Aferentes , Animales , Línea Celular , Ingestión de Alimentos , Células Enteroendocrinas/metabolismo , Femenino , Ganglión/metabolismo , Ganglión/patología , Incretinas/metabolismo , Mucosa Intestinal/inervación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/patología , Péptido YY/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Nervio Vago/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA