Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Mol Sci ; 24(7)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047805

RESUMEN

Graves' disease (GD) is a thyroid-specific autoimmune disease with a high prevalence worldwide. The disease is primarily mediated by B cells, which produce autoantibodies against the thyroid-stimulating hormone receptor (TSHR), chronically stimulating it and leading to high levels of thyroid hormones in the body. Interest in characterizing the immune response in GD has motivated many phenotyping studies. The immunophenotype of the cells involved and the interplay between them and their secreted factors are crucial to understanding disease progression and future treatment options. T cell populations are markedly distinct, including increased levels of Th17 and follicular helper T cells (Tfh), while Treg cells appear to be impaired. Some B cells subsets are autoreactive, and anti-TSHR antibodies are the key disease-causing outcome of this interplay. Though some consensus across phenotyping studies will be discussed here, there are also complexities that are yet to be resolved. A better understanding of the immunophenotype of Graves' disease can lead to improved treatment strategies and novel drug targets.


Asunto(s)
Enfermedad de Graves , Enfermedad de Hashimoto , Humanos , Enfermedad de Graves/etiología , Receptores de Tirotropina , Autoanticuerpos , Hormonas Tiroideas , Linfocitos T Reguladores
2.
Exp Cell Res ; 403(1): 112567, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33812866

RESUMEN

We chose to evaluate Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) as a possible biomarker for prostate cancer due to its involvement in nucleotide synthesis and cell cycle progression. We utilized two prostate cancer cell lines (PC3 and DU145) along with patient tissue and knockdowns to evaluate overall HPRT expression. The surface localization of HPRT was determined utilizing flow cytometry, confocal microscopy, and scanning electron microscopy followed by ADCC to evaluate targeting potential. We found significant upregulation of HPRT within malignant samples with approximately 47% of patients had elevated levels of HPRT compared to normal controls. We also observed a significant association between HPRT and the plasma membrane of DU145 cells (p = 0.0004), but found no presence on PC3 cells (p = 0.14). This was confirmed with scanning electron microscopy and confocal microscopy. ADCC experiments were performed to determine whether HPRT could be used as a target antigen for selective cell-mediated killing. We found that DU145 cells treated with HPRT antibodies had a significantly higher incidence of cell death than both isotype treated samples and PC3 cells treated with the same concentrations of HPRT antibody. Finally, we determined that p53 had a significant impact on HPRT expression both internally and on the surface of cancer cells. These results suggest HPRT as a possible biomarker target for the treatment of patients with prostate cancer.


Asunto(s)
División Celular/fisiología , Citotoxicidad Inmunológica/inmunología , Hipoxantina Fosforribosiltransferasa/metabolismo , Neoplasias de la Próstata/metabolismo , Línea Celular , Membrana Celular/metabolismo , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/inmunología , Masculino , Neoplasias de la Próstata/inmunología , Proteína p53 Supresora de Tumor/metabolismo
3.
Cancer Cell Int ; 20: 375, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32782434

RESUMEN

BACKGROUND: The aim of this study is to determine whether Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) could be used as a biomarker for the diagnosis and treatment of B cell malignancies. With 4.3% of all new cancers diagnosed as Non-Hodgkin lymphoma, finding new biomarkers for the treatment of B cell cancers is an ongoing pursuit. HPRT is a nucleotide salvage pathway enzyme responsible for the synthesis of guanine and inosine throughout the cell cycle. METHODS: Raji cells were used for this analysis due to their high HPRT internal expression. Internal expression was evaluated utilizing western blotting and RNA sequencing. Surface localization was analyzed using flow cytometry, confocal microscopy, and membrane biotinylation. To determine the source of HPRT surface expression, a CRISPR knockdown of HPRT was generated and confirmed using western blotting. To determine clinical significance, patient blood samples were collected and analyzed for HPRT surface localization. RESULTS: We found surface localization of HPRT on both Raji cancer cells and in 77% of the malignant ALL samples analyzed and observed no significant expression in healthy cells. Surface expression was confirmed in Raji cells with confocal microscopy, where a direct overlap between HPRT specific antibodies and a membrane-specific dye was observed. HPRT was also detected in biotinylated membranes of Raji cells. Upon HPRT knockdown in Raji cells, we found a significant reduction in surface expression, which shows that the HPRT found on the surface originates from the cells themselves. Finally, we found that cells that had elevated levels of HPRT had a direct correlation to XRCC2, BRCA1, PIK3CA, MSH2, MSH6, WDYHV1, AK7, and BLMH expression and an inverse correlation to PRKD2, PTGS2, TCF7L2, CDH1, IL6R, MC1R, AMPD1, TLR6, and BAK1 expression. Of the 17 genes with significant correlation, 9 are involved in cellular proliferation and DNA synthesis, regulation, and repair. CONCLUSIONS: As a surface biomarker that is found on malignant cells and not on healthy cells, HPRT could be used as a surface antigen for targeted immunotherapy. In addition, the gene correlations show that HPRT may have an additional role in regulation of cancer proliferation that has not been previously discovered.

4.
Cancer Cell Int ; 20: 127, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32317865

RESUMEN

BACKGROUND: Thymidine kinase 1 (TK1) is a pyrimidine salvage pathway enzyme that is up-regulated in malignant tissues and elevated in the serum of cancer patients. While TK1 has been well established as a tumor biomarker, little has been done to explore its potential as a tumor target. Recently, we reported the membrane expression of TK1 on malignant cells, but not on normal cells. This study explores the possible use of monoclonal antibodies for the targeting of membrane associated TK1 in lung, breast, colon and prostate cancer cells. METHODS: We generated and evaluated a panel of monoclonal antibodies against six different epitopes exposed in the tetrameric form of TK1. Antibodies were developed with hybridoma technology and validated with Western blot, siRNA TK1 knockdown, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The therapeutic potential of the antibodies was evaluated in vitro in antibody-dependent cell-mediated-cytotoxicity (ADCC) experiments. RESULTS: Binding of the antibodies to TK1 was confirmed by Western blot in purified recombinant protein, cancer serum, and cell lysate. After a TK1 knockdown was performed, a reduction of TK1 expression was observed with five antibodies. Using indirect ELISA, we identified 3B2E11, 9C10, 7H2, 3B4, 8G2 among the most sensitive antibodies (LOD = 10.73-66.9 pg/ml). Surface expression of TK1 on the membrane of various cancer cell lines was analyzed with flow cytometry. Antibodies 8G2, 3B4, 7HD and 5F7G11 detected TK1 on the membrane of various cancer cell lines, including lung, prostate, colon and breast. No significant binding was detected on normal lymphocytes. Increased cytolysis of lung (~ 70%. p = 0.0001), breast (~ 70%, p = 0.0461) and colon (~ 50% p = 0.0216) cancer cells by effector cells was observed when anti-TK1 antibodies were added during ADCC experiments. CONCLUSIONS: The antibodies developed showed potential to be used to detect and target TK1 on the membrane of various tumor cells. The targeting of TK1 in malignant cells using monoclonal antibodies may be a feasible approach for the elimination of high TK1 expressing tumor cells.

5.
Cancer Cell Int ; 19: 19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30679932

RESUMEN

BACKGROUND: Incidence of endometrial cancer are rising both in the United States and worldwide. As endometrial cancer becomes more prominent, the need to develop and characterize biomarkers for early stage diagnosis and the treatment of endometrial cancer has become an important priority. Several biomarkers currently used to diagnose endometrial cancer are directly related to obesity. Although epigenetic and mutational biomarkers have been identified and have resulted in treatment options for patients with specific aberrations, many tumors do not harbor those specific aberrations. A promising alternative is to determine biomarkers based on differential gene expression, which can be used to estimate prognosis. METHODS: We evaluated 589 patients to determine differential expression between normal and malignant patient samples. We then supplemented these evaluations with immunohistochemistry staining of endometrial tumors and normal tissues. Additionally, we used the Library of Integrated Network-based Cellular Signatures to evaluate the effects of 1826 chemotherapy drugs on 26 cell lines to determine the effects of each drug on HPRT1 and AURKA expression. RESULTS: Expression of HPRT1, Jag2, AURKA, and PGK1 were elevated when compared to normal samples, and HPRT1 and PGK1 showed a stepwise elevation in expression that was significantly related to cancer grade. To determine the prognostic potential of these genes, we evaluated patient outcome and found that levels of both HPRT1 and AURKA were significantly correlated with overall patient survival. When evaluating drugs that had the most significant effect on lowering the expression of HPRT1 and AURKA, we found that Topo I and MEK inhibitors were most effective at reducing HPRT1 expression. Meanwhile, drugs that were effective at reducing AURKA expression were more diverse (MEK, Topo I, MELK, HDAC, etc.). The effects of these drugs on the expression of HPRT1 and AURKA provides insight into their role within cellular maintenance. CONCLUSIONS: Collectively, these data show that JAG2, AURKA, PGK1, and HRPT1 have the potential to be used independently as diagnostic, prognostic, or treatment biomarkers in endometrial cancer. Expression levels of these genes may provide physicians with insight into tumor aggressiveness and chemotherapy drugs that are well suited to individual patients.

7.
Cancer Cell Int ; 18: 135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30214377

RESUMEN

BACKGROUND: Lung, breast, and colorectal malignancies are the leading cause of cancer-related deaths in the world causing over 2.8 million cancer-related deaths yearly. Despite efforts to improve prevention methods, early detection, and treatments, survival rates for advanced stage lung, breast, and colon cancer remain low, indicating a critical need to identify cancer-specific biomarkers for early detection and treatment. Thymidine kinase 1 (TK1) is a nucleotide salvage pathway enzyme involved in cellular proliferation and considered an important tumor proliferation biomarker in the serum. In this study, we further characterized TK1's potential as a tumor biomarker and immunotherapeutic target and clinical relevance. METHODS: We assessed TK1 surface localization by flow cytometry and confocal microscopy in lung (NCI-H460, A549), breast (MDA-MB-231, MCF7), and colorectal (HT-29, SW620) cancer cell lines. We also isolated cell surface proteins from HT-29 cells and performed a western blot confirming the presence of TK1 on cell membrane protein fractions. To evaluate TK1's clinical relevance, we compared TK1 expression levels in normal and malignant tissue through flow cytometry and immunohistochemistry. We also analyzed RNA-Seq data from The Cancer Genome Atlas (TCGA) to assess differential expression of the TK1 gene in lung, breast, and colorectal cancer patients. RESULTS: We found significant expression of TK1 on the surface of NCI-H460, A549, MDA-MB-231, MCF7, and HT-29 cell lines and a strong association between TK1's localization with the membrane through confocal microscopy and Western blot. We found negligible TK1 surface expression in normal healthy tissue and significantly higher TK1 expression in malignant tissues. Patient data from TCGA revealed that the TK1 gene expression is upregulated in cancer patients compared to normal healthy patients. CONCLUSIONS: Our results show that TK1 localizes on the surface of lung, breast, and colorectal cell lines and is upregulated in malignant tissues and patients compared to healthy tissues and patients. We conclude that TK1 is a potential clinical biomarker for the treatment of lung, breast, and colorectal cancer.

8.
J Pharmacol Exp Ther ; 360(3): 466-475, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28035006

RESUMEN

Coagulation Factor XII (FXII) plays a critical role in thrombosis. What is unclear is the level of enzyme occupancy of FXIIa that is needed for efficacy and the impact of FXIIa inhibition on cerebral embolism. A selective activated FXII (FXIIa) inhibitor, recombinant human albumin-tagged mutant Infestin-4 (rHA-Mut-inf), was generated to address these questions. rHA-Mut-inf displayed potency comparable to the original wild-type HA-Infestin-4 (human FXIIa inhibition constant = 0.07 and 0.12 nM, respectively), with markedly improved selectivity against Factor Xa (FXa) and plasmin. rHA-Mut-inf binds FXIIa, but not FXII zymogen, and competitively inhibits FXIIa protease activity. Its mode of action is hence akin to typical small-molecule inhibitors. Plasma shift and aPTT studies with rHA-Mut-inf demonstrated that calculated enzyme occupancy for FXIIa in achieving a putative aPTT doubling target in human, nonhuman primate, and rabbit is more than 99.0%. The effects of rHA-Mut-inf in carotid arterial thrombosis and microembolic signal (MES) in middle cerebral artery were assessed simultaneously in rabbits. Dose-dependent inhibition was observed for both arterial thrombosis and MES. The ED50 of thrombus formation was 0.17 mg/kg i.v. rHA-Mut-inf for the integrated blood flow and 0.16 mg/kg for thrombus weight; the ED50 for MES was 0.06 mg/kg. Ex vivo aPTT tracked with efficacy. In summary, our findings demonstrated that very high enzyme occupancy will be required for FXIIa active site inhibitors, highlighting the high potency and exquisite selectivity necessary for achieving efficacy in humans. Our MES studies suggest that targeting FXIIa may offer a promising strategy for stroke prevention associated with thromboembolic events.


Asunto(s)
Coagulación Sanguínea , Factor XIIa/antagonistas & inhibidores , Proteínas de Insectos/farmacología , Embolia Intracraneal , Trombosis Intracraneal , Proteínas Recombinantes de Fusión/farmacología , Albúmina Sérica/farmacología , Animales , Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Coagulación Sanguínea/fisiología , Fibrinolíticos/farmacología , Embolia Intracraneal/sangre , Embolia Intracraneal/tratamiento farmacológico , Trombosis Intracraneal/sangre , Trombosis Intracraneal/tratamiento farmacológico , Modelos Animales , Conejos , Albúmina Sérica Humana
9.
Regul Toxicol Pharmacol ; 85: 79-85, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28185844

RESUMEN

Glyphosate is a highly used active compound in agriculturally based pesticides. The literature regarding the toxicity of glyphosate to human cells has been highly inconsistent. We studied the resulting DNA damage and cytotoxicity of various glyphosate concentrations on human cells to evaluate DNA damaging potential. Utilizing human Raji cells, DNA damage was quantified using the comet assay, while cytotoxicity was further analyzed using MTT viability assays. Several glyphosate concentrations were assessed, ranging from 15 mM to 0.1 µM. We found that glyphosate treatment is lethal to Raji cells at concentrations above 10 mM, yet has no cytotoxic effects at concentrations at or below 100 µM. Treatment concentrations of 1 mM and 5 mM induce statistically significant DNA damage to Raji cells following 30-60 min of treatment, however, cells show a slow recovery from initial damage and cell viability is unaffected after 2 h. At these same concentrations, cells treated with additional compound did not recover and maintained high levels of DNA damage. While the cytotoxicity of glyphosate appears to be minimal for physiologically relevant concentrations, the compound has a definitive cytotoxic nature in human cells at high concentrations. Our data also suggests a mammalian metabolic pathway for the degradation of glyphosate may be present.


Asunto(s)
Glicina/análogos & derivados , Herbicidas/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Daño del ADN , Relación Dosis-Respuesta a Droga , Glicina/toxicidad , Humanos , Glifosato
10.
Electrophoresis ; 36(5): 813-7, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25486911

RESUMEN

Thymidine kinase 1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody (Ab) that binds to human TK1. We fabricated PMMA microfluidic devices to test the feasibility of detecting Ab-pTK1 immune complexes as a step toward TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound Abs using 0.5× PBS (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the Ab and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 µL sample volume, and takes just 1 min for separation.


Asunto(s)
Anticuerpos Monoclonales/química , Electroforesis por Microchip/métodos , Inmunoensayo/métodos , Proteínas Recombinantes/análisis , Timidina Quinasa/análisis , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/química , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Timidina Quinasa/química , Timidina Quinasa/inmunología , Timidina Quinasa/metabolismo
11.
Bioorg Med Chem Lett ; 25(22): 5291-4, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26433449

RESUMEN

The design and synthesis of two conformationally restricted oxazabicyclo octane derivatives as GRP119 agonists is described. Derivatives of scaffold C, with syn configuration, have the best overall profiles with respect to solubility and in vivo efficacy. Compound 25a was found to have extremely potent agonistic activity and was orally active in lowering blood glucose levels in a mouse oral glucose tolerance test at a dose of 0.1 mg/kg.


Asunto(s)
Compuestos de Azabiciclo/síntesis química , Hipoglucemiantes/síntesis química , Pirimidinas/síntesis química , Receptores Acoplados a Proteínas G/agonistas , Animales , Compuestos de Azabiciclo/farmacología , Prueba de Tolerancia a la Glucosa , Células HEK293 , Humanos , Hipoglucemiantes/farmacología , Ratones , Pirimidinas/farmacología , Solubilidad
12.
Phytother Res ; 29(3): 317-22, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25339289

RESUMEN

The immune system has capacity to suppress the development or progression of various malignancies including cancer. Research on the immunomodulating properties of polysaccharides obtained from plants, microorganisms, marine organisms, and fungi is growing rapidly. Among the various potential sources, lichens, symbiotic systems involving a fungus and an alga and/or a cyanobacterium, show promise as a potential source of immunomodulating compounds. It is well known that lichens produce an abundance of structurally diverse polysaccharides. However, only a limited number of studies have explored the immunostimulating properties of lichen polysaccharides. Published studies have shown that some lichen polysaccharides enhance production of nitrous oxide (NO) by macrophages and also alter the production levels of various proinflammatory and antiinflammatory cytokines (IL-10, IL-12, IL-1ß, TNF-α, and IFN-α/ß) by macrophages and dendritic cells. Although there are only a limited number of studies examining the role of lichen polysaccharides, all results suggest that lichen polysaccharides can induce immunomodulatory responses in macrophages and dendritic cells. Thus, a detailed evaluation of immunomodulatory capacity of lichen polysaccharides could provide a unique opportunity for the discovery of novel therapeutic agents.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Líquenes/química , Polisacáridos/farmacología , Animales , Células Dendríticas/efectos de los fármacos , Humanos , Interleucina-10/inmunología , Interleucina-12/inmunología , Interleucina-1beta/inmunología , Macrófagos/efectos de los fármacos , Óxido Nítrico/inmunología , Factor de Necrosis Tumoral alfa/inmunología
13.
Phytother Res ; 29(1): 100-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25257119

RESUMEN

Cancer is the second leading cause of human deaths in the USA. Despite continuous efforts to treat cancer over the past 50 years, human mortality rates have not decreased significantly. Natural products, such as lichens, have been good sources of anticancer drugs. This study reports the cytotoxic activity of crude extracts of 17 lichen species against Burkitt's lymphoma (Raji) cells. Out of the 17 lichen species, extracts from 14 species showed cytotoxicity against Raji cells. On the basis of IC50 values, we selected Xanthoparmelia chlorochroa and Tuckermannopsis ciliaris to study the mechanism of cell death. Viability of normal lymphocytes was not affected by the extracts of X. chlorochroa and T. ciliaris. We found that extracts from both lichens decreased proliferation, accumulated cells at the G0 /G1 stage, and caused apoptosis in a dose-dependent manner. Both lichen extracts also caused upregulation of p53. The T. ciliaris extract upregulated the expression of TK1 but X. chlorochroa did not. We also found that usnic, salazinic, constictic, and norstictic acids were present in the extract of X. chlorochroa, whereas protolichesterinic acid in T. ciliaris extracts. Our data demonstrate that lichen extracts merit further research as a potential source of anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Líquenes/química , 4-Butirolactona/análogos & derivados , Apoptosis/efectos de los fármacos , Benzofuranos , Línea Celular Tumoral/efectos de los fármacos , Supervivencia Celular , Humanos , Concentración 50 Inhibidora , Lactonas , Linfocitos/efectos de los fármacos , Estructura Molecular , Salicilatos , Timidina Quinasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Estados Unidos
14.
Curr Issues Mol Biol ; 16: 23-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23969318

RESUMEN

Methods for the rapid detection and differentiation of the Burkholderia pseudomallei complex comprising B. pseudomallei, B. mallei, and B. thailandensis, have been the topic of recent research due to the high degree of phenotypic and genotypic similarities of these species. B. pseudomallei and B. mallei are recognized by the CDC as tier 1 select agents. The high mortality rates of glanders and melioidosis, their potential use as bioweapons, and their low infectious dose, necessitate the need for rapid and accurate detection methods. Although B. thailandensis is generally avirulent in mammals, this species displays very similar phenotypic characteristics to that of B. pseudomallei. Optimal identification of these species remains problematic, due to the difficulty in developing a sensitive, selective, and accurate assay. The development of PCR technologies has revolutionized diagnostic testing and these detection methods have become popular due to their speed, sensitivity, and accuracy. The purpose of this review is to provide a comprehensive overview and evaluation of the advancements in PCR-based detection and differentiation methodologies for the B. pseudomallei complex, and examine their potential uses in diagnostic and environmental testing.


Asunto(s)
Armas Biológicas , Burkholderia mallei/aislamiento & purificación , Burkholderia pseudomallei/aislamiento & purificación , Burkholderia/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Animales , Técnicas de Tipificación Bacteriana , Burkholderia/genética , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Muermo/microbiología , Muermo/patología , Caballos , Humanos , Melioidosis/microbiología , Melioidosis/patología , Reacción en Cadena de la Polimerasa/normas , Polimorfismo de Nucleótido Simple , Sensibilidad y Especificidad
15.
PLoS One ; 18(11): e0293128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033034

RESUMEN

Breast cancer is the most common cancer diagnosis worldwide accounting for 1 out of every 8 cancer diagnoses. The elevated expression of Thymidine Kinase 1 (TK1) is associated with more aggressive tumor grades, including breast cancer. Recent studies indicate that TK1 may be involved in cancer pathogenesis; however, its direct involvement in breast cancer has not been identified. Here, we evaluate potential pathogenic effects of elevated TK1 expression by comparing HCC 1806 to HCC 1806 TK1-knockdown cancer cells (L133). Transcriptomic profiles of HCC 1806 and L133 cells showed cell cycle progression, apoptosis, and invasion as potential pathogenic pathways affected by TK1 expression. Subsequent in-vitro studies confirmed differences between HCC 1806 and L133 cells in cell cycle phase progression, cell survival, and cell migration. Expression comparison of several factors involved in these pathogenic pathways between HCC 1806 and L133 cells identified p21 and AKT3 transcripts were significantly affected by TK1 expression. Creation of a protein-protein interaction map of TK1 and the pathogenic factors we evaluated predict that the majority of factors evaluated either directly or indirectly interact with TK1. Our findings argue that TK1 elevation directly increases HCC 1806 cell pathogenicity and is likely occurring by p21- and AKT3-mediated mechanisms to promote cell cycle arrest, cellular migration, and cellular survival.


Asunto(s)
Neoplasias de la Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Supervivencia Celular/genética , Virulencia , División Celular , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Movimiento Celular/genética
16.
Cells ; 11(22)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429054

RESUMEN

Chimeric antigen receptor (CAR) T cells are an exciting advancement in cancer immunotherapy, with striking success in hematological cancers. However, in solid tumors, the unique immunosuppressive elements of the tumor microenvironment (TME) contribute to the failure of CAR T cells. This review discusses the cell populations, cytokine/chemokine profile, and metabolic immunosuppressive elements of the TME. This immunosuppressive TME causes CAR T-cell exhaustion and influences failure of CAR T cells to successfully infiltrate solid tumors. Recent advances in CAR T-cell development, which seek to overcome aspects of the TME immunosuppression, are also reviewed. Novel discoveries overcoming immunosuppressive limitations of the TME may lead to the success of CAR T cells in solid tumors.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Linfocitos T , Inmunoterapia Adoptiva , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Neoplasias/metabolismo , Neoplasias/metabolismo , Terapia de Inmunosupresión
17.
Cancers (Basel) ; 14(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35565306

RESUMEN

Cytokines are small molecular messengers that have profound effects on cancer development. Increasing evidence shows that cytokines are heavily involved in regulating both pro- and antitumor activities, such as immune activation and suppression, inflammation, cell damage, angiogenesis, cancer stem-cell-like cell maintenance, invasion, and metastasis. Cytokines are often required to drive these cancer-related processes and, therefore, represent an important research area for understanding cancer development and the potential identification of novel therapeutic targets. Interestingly, some cytokines are reported to be related to both pro- and anti-tumorigenicity, indicating that cytokines may play several complex roles relating to cancer pathogenesis. In this review, we discuss some major cancer-related processes and their relationship with several cytokines.

18.
PLoS One ; 17(3): e0264822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35239730

RESUMEN

Thymidine Kinase 1 (TK1) is primarily known as a cancer biomarker with good prognostic capabilities for both hematological and solid malignancies. However, recent studies targeting TK1 at protein and mRNA levels have shown that TK1 may be useful as a therapeutic target. In order to examine the use of TK1 as a therapeutic target, it is necessary to develop therapeutics specific for it. Single domain antibodies (sdAbs), represent an exciting approach for the development of immunotherapeutics due to their cost-effective production and higher tumor penetration than conventional antibodies. In this study, we isolated sdAb fragments specific to human TK1 from a human sdAb library. A total of 400 sdAbs were screened through 5 rounds of selection by monoclonal phage ELISA. The most sensitive sdAb fragments were selected as candidates for preclinical testing. The sdAb fragments showed specificity for human TK1 in phage ELISA, Western blot analysis and had an estimated limit of detection of 3.9 ng/ml for the antibody fragments 4-H-TK1_A1 and 4-H-TK1_D1. The antibody fragments were successfully expressed and used for detection of membrane associated TK1 (mTK1) through flow cytometry on cancer cells [lung (~95%), colon (~87%), breast (~53%)] and healthy human mononuclear cells (MNC). The most sensitive antibody fragments, 4-H-TK1_A1 and 4-H-TK1_D1 were fused to an engineered IgG1 Fc fragment. When added to cancer cells expressing mTK1 co-cultured with human MNCs, the anti-TK1-sdAb-IgG1_A1 and D1 were able to elicit a significant antibody-dependent cell-mediated cytotoxicity (ADCC) response against lung cancer cells compared to isotype controls (P<0.0267 and P<0.0265, respectively). To our knowledge this is the first time that the isolation and evaluation of human anti-TK1 single domain antibodies using phage display technology has been reported. The antibody fragments isolated here may represent a valuable resource for the detection and the targeting of TK1 on tumor cells.


Asunto(s)
Neoplasias , Anticuerpos de Dominio Único , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/genética , Neoplasias/terapia , Timidina Quinasa/genética
19.
Bioorg Med Chem Lett ; 21(11): 3290-6, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21536438

RESUMEN

The lead optimization studies of a series of GPR119 agonists incorporating a nortropanol scaffold are described. Extensive structure-activity relationship (SAR) studies of the lead compound 20f led to the identification of compound 36j as a potent, single digit nanomolar GPR119 agonist with high agonist activity. Compound 36j was orally active in lowering blood glucose levels in a mouse oral glucose tolerance test and increased plasma insulin levels in a rat hyperglycemic model. It showed good to excellent pharmacokinetic properties in rats and monkeys and no untoward activities in counter-screen assays. Compound 36j demonstrated an attractive in vitro and in vivo profile for further development.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Descubrimiento de Drogas , Hiperglucemia/tratamiento farmacológico , Nortropanos/síntesis química , Receptores Acoplados a Proteínas G/agonistas , Administración Oral , Animales , Modelos Animales de Enfermedad , Prueba de Tolerancia a la Glucosa , Concentración 50 Inhibidora , Ratones , Nortropanos/química , Nortropanos/uso terapéutico , Ratas
20.
Sci Rep ; 11(1): 2118, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483531

RESUMEN

Lung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab's yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFß activation. In IPF patient lung fibroblasts, TGFß treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated potent in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFß action though mechanisms beyond the inhibition of latent TGFß activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.


Asunto(s)
Anticuerpos/metabolismo , Fibroblastos/metabolismo , Integrina alfaV/metabolismo , Fibrosis Pulmonar/metabolismo , Animales , Anticuerpos/inmunología , Bleomicina , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Fibroblastos/citología , Humanos , Integrina alfaV/inmunología , Masculino , Ratones Endogámicos C57BL , Naftiridinas/farmacología , Propionatos/farmacología , Unión Proteica , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA