Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 602(7896): 274-279, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35082444

RESUMEN

The brain's remarkable ability to learn and execute various motor behaviours harnesses the capacity of neural populations to generate a variety of activity patterns. Here we explore systematic changes in preparatory activity in motor cortex that accompany motor learning. We trained rhesus monkeys to learn an arm-reaching task1 in a curl force field that elicited new muscle forces for some, but not all, movement directions2,3. We found that in a neural subspace predictive of hand forces, changes in preparatory activity tracked the learned behavioural modifications and reassociated4 existing activity patterns with updated movements. Along a neural population dimension orthogonal to the force-predictive subspace, we discovered that preparatory activity shifted uniformly for all movement directions, including those unaltered by learning. During a washout period when the curl field was removed, preparatory activity gradually reverted in the force-predictive subspace, but the uniform shift persisted. These persistent preparatory activity patterns may retain a motor memory of the learned field5,6 and support accelerated relearning of the same curl field. When a set of distinct curl fields was learned in sequence, we observed a corresponding set of field-specific uniform shifts which separated the associated motor memories in the neural state space7-9. The precise geometry of these uniform shifts in preparatory activity could serve to index motor memories, facilitating the acquisition, retention and retrieval of a broad motor repertoire.


Asunto(s)
Aprendizaje , Corteza Motora , Destreza Motora , Animales , Aprendizaje/fisiología , Macaca mulatta/fisiología , Corteza Motora/fisiología , Destreza Motora/fisiología , Movimiento/fisiología , Músculo Esquelético/fisiología
2.
Nat Methods ; 15(10): 805-815, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30224673

RESUMEN

Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping recording sessions spanning months to improve inference of underlying dynamics.


Asunto(s)
Potenciales de Acción , Algoritmos , Modelos Neurológicos , Corteza Motora/fisiología , Neuronas/fisiología , Animales , Humanos , Masculino , Persona de Mediana Edad , Dinámica Poblacional , Primates
4.
Br J Cancer ; 119(7): 815-822, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30206366

RESUMEN

BACKGROUND: Gemcitabine is used to treat a wide range of tumours, but its efficacy is limited by cancer cell resistance mechanisms. NUC-1031, a phosphoramidate modification of gemcitabine, is the first anti-cancer ProTide to enter the clinic and is designed to overcome these key resistance mechanisms. METHODS: Sixty-eight patients with advanced solid tumours who had relapsed after treatment with standard therapy were recruited to a dose escalation study to determine the recommended Phase II dose (RP2D) and assess the safety of NUC-1031. Pharmacokinetics and anti-tumour activity was also assessed. RESULTS: Sixty-eight patients received treatment, 50% of whom had prior exposure to gemcitabine. NUC-1031 was well tolerated with the most common Grade 3/4 adverse events of neutropaenia, lymphopaenia and fatigue occurring in 13 patients each (19%). In 49 response-evaluable patients, 5 (10%) achieved a partial response and 33 (67%) had stable disease, resulting in a 78% disease control rate. Cmax levels of the active intracellular metabolite, dFdCTP, were 217-times greater than those reported for equimolar doses of gemcitabine, with minimal toxic metabolite accumulation. The RP2D was determined as 825 mg/m2 on days 1, 8 and 15 of a 28-day cycle. CONCLUSIONS: NUC-1031 was well tolerated and demonstrated clinically significant anti-tumour activity, even in patients with prior gemcitabine exposure and in cancers not traditionally perceived as gemcitabine-responsive.


Asunto(s)
Antineoplásicos/administración & dosificación , Citidina Monofosfato/análogos & derivados , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Citidina Monofosfato/administración & dosificación , Citidina Monofosfato/efectos adversos , Citidina Monofosfato/farmacocinética , Esquema de Medicación , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Recurrencia , Análisis de Supervivencia , Resultado del Tratamiento , Adulto Joven
5.
Nature ; 477(7363): 171-8, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21796121

RESUMEN

Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30-80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.


Asunto(s)
Modelos Neurológicos , Inhibición Neural/fisiología , Neuronas/metabolismo , Corteza Prefrontal/fisiología , Corteza Prefrontal/fisiopatología , Conducta Social , Animales , Trastorno Autístico/fisiopatología , Modelos Animales de Enfermedad , Células HEK293 , Hipocampo/citología , Humanos , Aprendizaje , Trastornos Mentales/fisiopatología , Ratones , Actividad Motora , Opsinas/metabolismo , Esquizofrenia/fisiopatología
6.
J Neurophysiol ; 116(2): 698-708, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27193319

RESUMEN

We explored the origins of unintentional changes in performance during accurate force production in isometric conditions seen after turning visual feedback off. The idea of control with referent spatial coordinates suggests that these phenomena could result from drifts of the referent coordinate for the effector. Subjects performed accurate force/moment production tasks by pressing with the fingers of a hand on force sensors. Turning the visual feedback off resulted in slow drifts of both total force and total moment to lower magnitudes of these variables; these drifts were more pronounced in the right hand of the right-handed subjects. Drifts in individual finger forces could be in different direction; in particular, fingers that produced moments of force against the required total moment showed an increase in their forces. The force/moment drift was associated with a drop in the index of synergy stabilizing performance under visual feedback. The drifts in directions that changed performance (non-motor equivalent) and in directions that did not (motor equivalent) were of about the same magnitude. The results suggest that control with referent coordinates is associated with drifts of those referent coordinates toward the corresponding actual coordinates of the hand, a reflection of the natural tendency of physical systems to move toward a minimum of potential energy. The interaction between drifts of the hand referent coordinate and referent orientation leads to counterdirectional drifts in individual finger forces. The results also demonstrate that the sensory information used to create multifinger synergies is necessary for their presence over the task duration.


Asunto(s)
Retroalimentación Sensorial/fisiología , Dedos/fisiología , Movimiento/fisiología , Orientación/fisiología , Desempeño Psicomotor/fisiología , Análisis de Varianza , Femenino , Humanos , Elevación , Masculino , Modelos Biológicos , Adulto Joven
7.
Eur J Clin Invest ; 45(7): 679-85, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25912957

RESUMEN

BACKGROUND: The role of hormones in reduced orthostatic tolerance following long-term immobilization remains uncertain. We have previously shown that plasma concentrations of adrenomedullin and galanin, two peptides with vasodepressor properties, rise significantly during orthostatic challenge. We tested the hypothesis that bedrest immobilization increases the rise in adrenomedullin and galanin during orthostatic challenge leading to presyncope. MATERIALS AND METHODS: We measured baseline (supine), presyncope and recovery (10 min postpresyncope, supine) levels of adrenomedullin and galanin in 8 healthy men, before and after 21 days of -6° head-down bed rest (HDBR). Presyncope was elicited using a combined head-up tilt and graded lower body negative pressure protocol. Orthostatic tolerance was defined as the time taken from the commencement of head-up tilt to the development of presyncope. RESULTS: Orthostatic tolerance time after HDBR reduced by 8·36 ± 5·39 min (P = 0·0032). HDBR increased plasma adrenomedullin concentration to orthostatic challenge (P = 0·0367). Compared to pre-HDBR, a significant rise in post-HDBR presyncopal (P < 0·001) and recovery adrenomedullin concentration (P < 0·01) was demonstrated. In contrast, we observed no change in pre- and post-HDBR galanin levels to orthostatic challenge. CONCLUSIONS: Bedrest immobilization appears to affect adrenomedullin levels in that greater increases in adrenomedullin occur at presyncope following bedrest immobilization. Due to its peripheral vasculature hypotensive effect, the greater levels of adrenomedullin at presyncope following bedrest immobilization may have contributed to the reduced orthostatic capacity postbedrest.


Asunto(s)
Adrenomedulina/metabolismo , Reposo en Cama , Galanina/metabolismo , Síncope/sangre , Adulto , Inclinación de Cabeza/fisiología , Hemodinámica/fisiología , Humanos , Presión Negativa de la Región Corporal Inferior , Masculino , Persona de Mediana Edad , Posición Supina/fisiología , Pruebas de Mesa Inclinada , Adulto Joven
8.
Nat Methods ; 9(2): 159-72, 2011 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-22179551

RESUMEN

Diverse optogenetic tools have allowed versatile control over neural activity. Many depolarizing and hyperpolarizing tools have now been developed in multiple laboratories and tested across different preparations, presenting opportunities but also making it difficult to draw direct comparisons. This challenge has been compounded by the dependence of performance on parameters such as vector, promoter, expression time, illumination, cell type and many other variables. As a result, it has become increasingly complicated for end users to select the optimal reagents for their experimental needs. For a rapidly growing field, critical figures of merit should be formalized both to establish a framework for further development and so that end users can readily understand how these standardized parameters translate into performance. Here we systematically compared microbial opsins under matched experimental conditions to extract essential principles and identify key parameters for the conduct, design and interpretation of experiments involving optogenetic techniques.


Asunto(s)
Opsinas/metabolismo , Potenciales de Acción , Animales , Cinética , Luz , Células Piramidales/fisiología
10.
Front Immunol ; 14: 1055429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845123

RESUMEN

Importance: The degree of immune protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants provided by infection versus vaccination with wild-type virus remains unresolved, which could influence future vaccine strategies. The gold-standard for assessing immune protection is viral neutralization; however, few studies involve a large-scale analysis of viral neutralization against the Omicron variant by sera from individuals infected with wild-type virus. Objectives: 1) To define the degree to which infection versus vaccination with wild-type SARS-CoV-2 induced neutralizing antibodies against Delta and Omicron variants.2) To determine whether clinically available data, such as infection/vaccination timing or antibody status, can predict variant neutralization. Methods: We examined a longitudinal cohort of 653 subjects with sera collected three times at 3-to-6-month intervals from April 2020 to June 2021. Individuals were categorized according to SARS-CoV-2 infection and vaccination status. Spike and nucleocapsid antibodies were detected via ADVIA Centaur® (Siemens) and Elecsys® (Roche) assays, respectively. The Healgen Scientific® lateral flow assay was used to detect IgG and IgM spike antibody responses. Pseudoviral neutralization assays were performed on all samples using human ACE2 receptor-expressing HEK-293T cells infected with SARS-CoV-2 spike protein pseudotyped lentiviral particles for wild-type (WT), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants. Results: Vaccination after infection led to the highest neutralization titers at all timepoints for all variants. Neutralization was also more durable in the setting of prior infection versus vaccination alone. Spike antibody clinical testing effectively predicted neutralization for wild-type and Delta. However, nucleocapsid antibody presence was the best independent predictor of Omicron neutralization. Neutralization of Omicron was lower than neutralization of either wild-type or Delta virus across all groups and timepoints, with significant activity only present in patients that were first infected and later immunized. Conclusions: Participants having both infection and vaccination with wild-type virus had the highest neutralizing antibody levels against all variants and had persistence of activity. Neutralization of WT and Delta virus correlated with spike antibody levels against wild-type and Delta variants, but Omicron neutralization was better correlated with evidence of prior infection. These data help explain why 'breakthrough' Omicron infections occurred in previously vaccinated individuals and suggest better protection is observed in those with both vaccination and previous infection. This study also supports the concept of future SARS-CoV-2 Omicron-specific vaccine boosters.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Técnicas y Procedimientos Diagnósticos , Anticuerpos Neutralizantes , Infección Irruptiva , Vacunas contra la COVID-19 , Inmunoglobulina M , Prueba de COVID-19
11.
bioRxiv ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205406

RESUMEN

High-density, integrated silicon electrodes have begun to transform systems neuroscience, by enabling large-scale neural population recordings with single cell resolution. Existing technologies, however, have provided limited functionality in nonhuman primate species such as macaques, which offer close models of human cognition and behavior. Here, we report the design, fabrication, and performance of Neuropixels 1.0-NHP, a high channel count linear electrode array designed to enable large-scale simultaneous recording in superficial and deep structures within the macaque or other large animal brain. These devices were fabricated in two versions: 4416 electrodes along a 45 mm shank, and 2496 along a 25 mm shank. For both versions, users can programmatically select 384 channels, enabling simultaneous multi-area recording with a single probe. We demonstrate recording from over 3000 single neurons within a session, and simultaneous recordings from over 1000 neurons using multiple probes. This technology represents a significant increase in recording access and scalability relative to existing technologies, and enables new classes of experiments involving fine-grained electrophysiological characterization of brain areas, functional connectivity between cells, and simultaneous brain-wide recording at scale.

12.
Nat Commun ; 12(1): 3689, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140486

RESUMEN

Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.


Asunto(s)
Interfaces Cerebro-Computador , Calcio/metabolismo , Dendritas/fisiología , Microscopía Intravital/instrumentación , Microscopía Intravital/métodos , Corteza Motora/diagnóstico por imagen , Imagen Multimodal/métodos , Animales , Proteínas de Unión al Calcio/metabolismo , Dendritas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Implantes Experimentales , Macaca mulatta , Masculino , Modelos Neurológicos , Actividad Motora/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Fotones
13.
Histopathology ; 57(1): 27-38, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20584089

RESUMEN

AIMS: Accurate determination of HER-2 status is critical to identify patients for whom trastuzumab treatment will be of benefit. Although the recommended primary method of evaluation is immunohistochemistry, numerous reports of variability in interpretation have raised uncertainty about the reliability of results. Recent guidelines have suggested that image analysis could be an effective tool for achieving consistent interpretation, and this study aimed to assess whether this technology has potential as a diagnostic support tool. METHODS AND RESULTS: Across a cohort of 275 cases, image analysis could accurately classify HER-2 status, with 91% agreement between computer-aided classification and the pathology review. Assessment of the continuity of membranous immunoreactivity in addition to intensity of reactivity was critical to distinguish between negative and equivocal cases and enabled image analysis to report a lower referral rate of cases for confirmatory fluorescence in situ hybridization (FISH) testing. An excellent concordance rate of 95% was observed between FISH and the automated review across 136 informative cases. CONCLUSIONS: This study has validated that image analysis can robustly and accurately evaluate HER-2 status in immunohistochemically stained tissue. Based on these findings, image analysis has great potential as a diagnostic support tool for pathologists and biomedical scientists, and may significantly improve the standardization of HER-2 testing by providing a quantitative reference method for interpretation.


Asunto(s)
Neoplasias de la Mama/química , Neoplasias de la Mama/diagnóstico , Procesamiento de Imagen Asistido por Computador/métodos , Receptor ErbB-2/análisis , Algoritmos , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Estudios de Cohortes , Diagnóstico por Computador , Femenino , Genes erbB-2 , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Inmunohistoquímica/métodos , Hibridación Fluorescente in Situ , Trastuzumab
14.
Neuron ; 106(2): 329-339.e4, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32053768

RESUMEN

Current theories suggest that an error-driven learning process updates trial-by-trial to facilitate motor adaptation. How this process interacts with motor cortical preparatory activity-which current models suggest plays a critical role in movement initiation-remains unknown. Here, we evaluated the role of motor preparation during visuomotor adaptation. We found that preparation time was inversely correlated to variance of errors on current trials and mean error on subsequent trials. We also found causal evidence that intracortical microstimulation during motor preparation was sufficient to disrupt learning. Surprisingly, stimulation did not affect current trials, but instead disrupted the update computation of a learning process, thereby affecting subsequent trials. This is consistent with a Bayesian estimation framework where the motor system reduces its learning rate by virtue of lowering error sensitivity when faced with uncertainty. This interaction between motor preparation and the error-driven learning system may facilitate new probes into mechanisms underlying trial-by-trial adaptation.


Asunto(s)
Anticipación Psicológica/fisiología , Aprendizaje/fisiología , Adaptación Psicológica , Animales , Teorema de Bayes , Mapeo Encefálico , Corteza Cerebral/fisiología , Estimulación Eléctrica , Macaca mulatta , Estimulación Luminosa , Desempeño Psicomotor/fisiología
15.
Neuron ; 103(2): 292-308.e4, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31171448

RESUMEN

A central goal of systems neuroscience is to relate an organism's neural activity to behavior. Neural population analyses often reduce the data dimensionality to focus on relevant activity patterns. A major hurdle to data analysis is spike sorting, and this problem is growing as the number of recorded neurons increases. Here, we investigate whether spike sorting is necessary to estimate neural population dynamics. The theory of random projections suggests that we can accurately estimate the geometry of low-dimensional manifolds from a small number of linear projections of the data. We recorded data using Neuropixels probes in motor cortex of nonhuman primates and reanalyzed data from three previous studies and found that neural dynamics and scientific conclusions are quite similar using multiunit threshold crossings rather than sorted neurons. This finding unlocks existing data for new analyses and informs the design and use of new electrode arrays for laboratory and clinical use.


Asunto(s)
Potenciales de Acción/fisiología , Modelos Neurológicos , Corteza Motora/citología , Neuronas/fisiología , Dinámicas no Lineales , Algoritmos , Animales , Simulación por Computador , Macaca mulatta , Masculino
17.
Appl Microbiol Biotechnol ; 81(1): 119-26, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18688611

RESUMEN

Supplementation of the divalent cations calcium and magnesium to submerged cultures of Streptomyces hygroscopicus var. geldanus greatly influenced morphological development and secondary metabolite synthesis. The disparate response could be explained in terms of the differential effects of Ca2+ and Mg2+ ions on cell surface hydrophobicity. Cultures supplemented with calcium ions were found to be hydrophobic, which resulted in cell concentration-dependent aggregation. In contrast, those grown in a magnesium-rich medium were found to be hydrophilic with the organism growing as freely dispersed filaments that synthesised geldanamycin at an optimal rate in comparison to hydrophobic pellets.


Asunto(s)
Calcio/metabolismo , Magnesio/metabolismo , Streptomyces/citología , Streptomyces/metabolismo , Benzoquinonas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Lactamas Macrocíclicas/metabolismo , Streptomyces/química , Streptomyces/crecimiento & desarrollo
18.
J Neural Eng ; 15(2): 026020, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29265009

RESUMEN

OBJECTIVE: Electrical stimulation is a widely used and effective tool in systems neuroscience, neural prosthetics, and clinical neurostimulation. However, electrical artifacts evoked by stimulation prevent the detection of spiking activity on nearby recording electrodes, which obscures the neural population response evoked by stimulation. We sought to develop a method to clean artifact-corrupted electrode signals recorded on multielectrode arrays in order to recover the underlying neural spiking activity. APPROACH: We created an algorithm, which performs estimation and removal of array artifacts via sequential principal components regression (ERAASR). This approach leverages the similar structure of artifact transients, but not spiking activity, across simultaneously recorded channels on the array, across pulses within a train, and across trials. The ERAASR algorithm requires no special hardware, imposes no requirements on the shape of the artifact or the multielectrode array geometry, and comprises sequential application of straightforward linear methods with intuitive parameters. The approach should be readily applicable to most datasets where stimulation does not saturate the recording amplifier. MAIN RESULTS: The effectiveness of the algorithm is demonstrated in macaque dorsal premotor cortex using acute linear multielectrode array recordings and single electrode stimulation. Large electrical artifacts appeared on all channels during stimulation. After application of ERAASR, the cleaned signals were quiescent on channels with no spontaneous spiking activity, whereas spontaneously active channels exhibited evoked spikes which closely resembled spontaneously occurring spiking waveforms. SIGNIFICANCE: We hope that enabling simultaneous electrical stimulation and multielectrode array recording will help elucidate the causal links between neural activity and cognition and facilitate naturalistic sensory protheses.


Asunto(s)
Algoritmos , Artefactos , Estimulación Encefálica Profunda/métodos , Electrodos Implantados , Fuerza de la Mano/fisiología , Corteza Motora/fisiología , Animales , Macaca mulatta , Masculino , Análisis de Componente Principal
19.
Sci Rep ; 8(1): 6775, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712920

RESUMEN

Optogenetic tools have opened a rich experimental landscape for understanding neural function and disease. Here, we present the first validation of eight optogenetic constructs driven by recombinant adeno-associated virus (AAV) vectors and a WGA-Cre based dual injection strategy for projection targeting in a widely-used New World primate model, the common squirrel monkey Saimiri sciureus. We observed opsin expression around the local injection site and in axonal projections to downstream regions, as well as transduction to thalamic neurons, resembling expression patterns observed in macaques. Optical stimulation drove strong, reliable excitatory responses in local neural populations for two depolarizing opsins in anesthetized monkeys. Finally, we observed continued, healthy opsin expression for at least one year. These data suggest that optogenetic tools can be readily applied in squirrel monkeys, an important first step in enabling precise, targeted manipulation of neural circuits in these highly trainable, cognitively sophisticated animals. In conjunction with similar approaches in macaques and marmosets, optogenetic manipulation of neural circuits in squirrel monkeys will provide functional, comparative insights into neural circuits which subserve dextrous motor control as well as other adaptive behaviors across the primate lineage. Additionally, development of these tools in squirrel monkeys, a well-established model system for several human neurological diseases, can aid in identifying novel treatment strategies.


Asunto(s)
Red Nerviosa/cirugía , Neuronas/metabolismo , Optogenética/instrumentación , Saimiri/genética , Animales , Axones/metabolismo , Axones/patología , Dependovirus/genética , Humanos , Red Nerviosa/fisiología , Opsinas/genética , Saimiri/cirugía , Tálamo/fisiopatología , Tálamo/cirugía
20.
Br Dent J ; 233(5): 402-403, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085469
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA