Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PeerJ ; 7: e6393, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723636

RESUMEN

Honey bees directly affect and are influenced by their local environment, in terms of food sources, pollinator densities, pathogen and toxin exposure and climate. Currently, there is a lack of studies analyzing these data with Geographic Information Systems (GIS) to investigate spatial relationships with the environment. Particularly for inter-colonial pathogen transmission, it is known that the likelihood of a healthy colony to become infested (e.g., Varroosis) or infected (e.g., American foulbrood-AFB, European foulbrood-EFB) increases with higher colony density. Whether these transmission paths can actually be asserted at apiary level is largely unknown. Here, we unraveled spatial distribution and high-resolution density of apiaries and bacterial honey bee brood diseases in Switzerland based on available GIS data. Switzerland as 'model country' offers the unique opportunity to get apiary data since 2010 owing to compulsory registration for every beekeeper. Further, both destructive bee brood diseases (AFB and EFB) are legally notifiable in Switzerland, and EFB has an epizootic character for the last decades. As governmental data sets have to be ameliorated, raw data from the cantonal agricultural or veterinary offices have been included. We found a mean density of 0.56 apiaries per km2, and high resolution spatial analyzes showed strong correlation between density of apiaries and human population density as well as agricultural landscape type. Concerning two bacterial bee brood diseases (AFB, EFB), no significant correlation was detectable with density of apiaries on cantonal level, though a high correlation of EFB cases and apiary density became obvious on higher resolution (district level). Hence, Swiss EFB epizootics seem to have benefited from high apiary densities, promoting the transmission of pathogens by adult bees. The GIS-based method presented here, might also be useful for other bee diseases, anthropogenic or environmental factors affecting bee colonies.

2.
Integr Environ Assess Manag ; 13(6): 974-979, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28755496

RESUMEN

For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC.


Asunto(s)
Productos Agrícolas/genética , Productos Agrícolas/toxicidad , Plantas Modificadas Genéticamente/toxicidad , Bacillus thuringiensis , Ecosistema , Monitoreo del Ambiente/métodos , Medición de Riesgo/métodos , Zea mays
3.
Sci Rep ; 7(1): 1560, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28484216

RESUMEN

A novel weed has recently emerged, causing serious agronomic damage in one of the most important maize-growing regions of Western Europe, the Northern Provinces of Spain. The weed has morphological similarities to a wild relative of maize and has generally been referred to as teosinte. However, the identity, origin or genetic composition of 'Spanish teosinte' was unknown. Here, we present a genome-wide analysis of single-nucleotide polymorphism (SNP) data for Spanish teosinte, sympatric populations of cultivated maize and samples of reference teosinte taxa. Our data are complemented with previously published SNP datasets of cultivated maize and two Mexican teosinte subspecies. Our analyses reveal that Spanish teosinte does not group with any of the currently recognized teosinte taxa. Based on Bayesian clustering analysis and hybridization simulations, we infer that Spanish teosinte is of admixed origin, most likely involving Zea mays ssp. mexicana as one parental taxon, and an unidentified cultivated maize variety as the other. Analyses of plants grown from seeds collected in Spanish maize fields and experimental crosses under controlled conditions reveal that hybridization does occur between Spanish teosinte and cultivated maize in Spain, and that current hybridization is asymmetric, favouring the introgression of Spanish teosinte into cultivated maize, rather than vice versa.


Asunto(s)
Evolución Biológica , Malezas/fisiología , Zea mays/fisiología , Europa (Continente) , Hibridación Genética , Análisis de Componente Principal , Semillas/genética , Zea mays/genética
4.
Sci Total Environ ; 547: 226-233, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26789360

RESUMEN

Crop plant residues may enter aquatic ecosystems via wind deposition or surface runoff. In the case of genetically modified crops or crops treated with systemic pesticides, these materials may contain insecticidal Bt toxins or pesticides that potentially affect aquatic life. However, the particular exposure pattern of aquatic ecosystems (i.e., via plant material) is not properly reflected in current risk assessment schemes, which primarily focus on waterborne toxicity and not on plant material as the route of uptake. To assist in risk assessment, the present study proposes a prioritization procedure of stream types based on the freshwater network and crop-specific cultivation data using maize in Germany as a model system. To identify stream types with a high probability of receiving crop materials, we developed a formalized, criteria-based and thus transparent procedure that considers the exposure-related parameters, ecological status--an estimate of the diversity and potential vulnerability of local communities towards anthropogenic stress--and availability of uncontaminated reference sections. By applying the procedure to maize, ten stream types out of 38 are expected to be the most relevant if the ecological effects from plant-incorporated pesticides need to be evaluated. This information is an important first step to identifying habitats within these stream types with a high probability of receiving crop plant material at a more local scale, including accumulation areas. Moreover, the prioritization procedure developed in the present study may support the selection of aquatic species for ecotoxicological testing based on their probability of occurrence in stream types having a higher chance of exposure. Finally, this procedure can be adapted to any geographical region or crop of interest and is, therefore, a valuable tool for a site-specific risk assessment of crop plants carrying systemic pesticides or novel proteins, such as insecticidal Bt toxins, expressed in genetically modified crops.


Asunto(s)
Productos Agrícolas , Monitoreo del Ambiente/métodos , Insecticidas/análisis , Plantas Modificadas Genéticamente , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Sistemas de Información Geográfica , Alemania , Residuos de Plaguicidas/análisis , Medición de Riesgo , Ríos/química
5.
Environ Sci Pollut Res Int ; 22(21): 16936-42, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26109224

RESUMEN

In Switzerland, the cultivation of genetically modified (GM) oilseed rape (Brassica napus L.) and the use of its seeds for food and feed are not permitted. Nevertheless, the GM oilseed rape events GT73, MS8×RF3, MS8 and RF3 have recently been found in the Rhine port of Basel, Switzerland. The sources of GM oilseed rape seeds have been unknown. The main agricultural good being imported at the Rhine port of Basel is wheat and from 2010 to 2013, 19% of all Swiss wheat imports originated from Canada. As over 90% of all oilseed rape grown in Canada is GM, we hypothesised that imports of Canadian wheat may contain low level impurities of GM oilseed rape. Therefore, waste fraction samples gathered during the mechanical cleaning of Canadian wheat from two Swiss grain mills were analysed by separating oilseed rape seeds from waste fraction samples and testing DNA of pooled seeds for the presence of transgenes by real-time PCR. Furthermore, oilseed rape seeds from each grain mill were sown in a germination experiment, and seedling DNA was tested for the presence of transgenes by real-time PCR. GT73, MS8×RF3, MS8 and RF3 oilseed rape was detected among seed samples and seedlings of both grain mills. Based on this data, we projected a mean proportion of 0.005% of oilseed rape in wheat imported from Canada. Besides Canadian wheat, the Rhine port of Basel does not import any other significant amounts of agricultural products from GM oilseed rape producing countries. We therefore conclude that Canadian wheat is the major source of unintended introduction of GM oilseed rape seeds into Switzerland.


Asunto(s)
Brassica napus/genética , Contaminación de Alimentos/análisis , Plantas Modificadas Genéticamente/genética , Semillas/genética , Triticum/genética , Manipulación de Alimentos , Reacción en Cadena en Tiempo Real de la Polimerasa , Suiza
6.
Environ Sci Pollut Res Int ; 21(2): 1455-65, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23917737

RESUMEN

To obtain a reference status prior to cultivation of genetically modified oilseed rape (OSR, Brassica napus L.) in Switzerland, the occurrence of feral OSR was monitored along transportation routes and at processing sites. The focus was set on the detection of (transgenic) OSR along railway lines from the Swiss borders with Italy and France to the respective oilseed processing factories in Southern and Northern Switzerland (Ticino and region of Basel). A monitoring concept was developed to identify sites of largest risk of escape of genetically modified plants into the environment in Switzerland. Transport spillage of OSR seeds from railway goods cars particularly at risk hot spots such as switch yards and (un)loading points but also incidental and continuous spillage were considered. All OSR plants, including their hybridization partners which were collected at the respective monitoring sites were analyzed for the presence of transgenes by real-time PCR. On sampling lengths each of 4.2 and 5.7 km, respectively, 461 and 1,574 plants were sampled in Ticino and the region of Basel. OSR plants were found most frequently along the routes to the oilseed facilities, and in larger amounts on risk hot spots compared to sites of random sampling. At three locations in both monitored regions, transgenic B. napus line GT73 carrying the glyphosate resistance transgenes gox and CP4 epsps were detected (Ticino, 22 plants; in the region of Basel, 159).


Asunto(s)
Brassica napus/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Brassica napus/crecimiento & desarrollo , Monitoreo del Ambiente , Francia , Glicina/análogos & derivados , Hibridación Genética , Especies Introducidas , Italia , Plantas Modificadas Genéticamente/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas , Suiza , Transgenes , Transportes , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA