Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(12): 127203, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30978080

RESUMEN

We investigate the Gilbert damping parameter α for rare earth (RE)-transition metal (TM) ferrimagnets over a wide temperature range. Extracted from the field-driven magnetic domain-wall mobility, α was as low as the order of 10^{-3} and was almost constant across the angular momentum compensation temperature T_{A}, starkly contrasting previous predictions that α should diverge at T_{A} due to a vanishing total angular momentum. Thus, magnetic damping of RE-TM ferrimagnets is not related to the total angular momentum but is dominated by electron scattering at the Fermi level where the TM has a dominant damping role. This low value of the Gilbert damping parameter suggests that ferrimagnets can serve as versatile platforms for low-dissipation high-speed magnetic devices.

2.
Nat Mater ; 16(12): 1187-1192, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28967917

RESUMEN

Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices. A central motivation towards this direction is that antiferromagnetic spin dynamics is expected to be much faster than its ferromagnetic counterpart. Recent theories indeed predicted faster dynamics of antiferromagnetic domain walls (DWs) than ferromagnetic DWs. However, experimental investigations of antiferromagnetic spin dynamics have remained unexplored, mainly because of the magnetic field immunity of antiferromagnets. Here we show that fast field-driven antiferromagnetic spin dynamics is realized in ferrimagnets at the angular momentum compensation point TA. Using rare earth-3d-transition metal ferrimagnetic compounds where net magnetic moment is nonzero at TA, the field-driven DW mobility is remarkably enhanced up to 20 km s-1 T-1. The collective coordinate approach generalized for ferrimagnets and atomistic spin model simulations show that this remarkable enhancement is a consequence of antiferromagnetic spin dynamics at TA. Our finding allows us to investigate the physics of antiferromagnetic spin dynamics and highlights the importance of tuning of the angular momentum compensation point of ferrimagnets, which could be a key towards ferrimagnetic spintronics.

3.
Phys Rev Lett ; 117(8): 087203, 2016 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-27588878

RESUMEN

We theoretically investigate the dynamics of antiferromagnetic domain walls driven by spin-orbit torques in antiferromagnet-heavy-metal bilayers. We show that spin-orbit torques drive antiferromagnetic domain walls much faster than ferromagnetic domain walls. As the domain wall velocity approaches the maximum spin-wave group velocity, the domain wall undergoes Lorentz contraction and emits spin waves in the terahertz frequency range. The interplay between spin-orbit torques and the relativistic dynamics of antiferromagnetic domain walls leads to the efficient manipulation of antiferromagnetic spin textures and paves the way for the generation of high frequency signals from antiferromagnets.

4.
Science ; 370(6523): 1438-1442, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33335059

RESUMEN

A tenet of special relativity is that no particle can exceed the speed of light. In certain magnetic materials, the maximum magnon group velocity serves as an analogous relativistic limit for the speed of magnetic solitons. Here, we drive domain walls to this limit in a low-dissipation magnetic insulator using pure spin currents from the spin Hall effect. We achieve record current-driven velocities in excess of 4300 meters per second-within ~10% of the relativistic limit-and we observe key signatures of relativistic motion associated with Lorentz contraction, which leads to velocity saturation. The experimental results are well explained through analytical and atomistic modeling. These observations provide critical insight into the fundamental limits of the dynamics of magnetic solitons and establish a readily accessible experimental framework to study relativistic solitonic physics.

5.
Science ; 366(6469): 1125-1128, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31780558

RESUMEN

Widespread applications of magnetic devices require an efficient means to manipulate the local magnetization. One mechanism is the electrical spin-transfer torque associated with electron-mediated spin currents; however, this suffers from substantial energy dissipation caused by Joule heating. We experimentally demonstrated an alternative approach based on magnon currents and achieved magnon-torque-induced magnetization switching in Bi2Se3/antiferromagnetic insulator NiO/ferromagnet devices at room temperature. The magnon currents carry spin angular momentum efficiently without involving moving electrons through a 25-nanometer-thick NiO layer. The magnon torque is sufficient to control the magnetization, which is comparable with previously observed electrical spin torque ratios. This research, which is relevant to the energy-efficient control of spintronic devices, will invigorate magnon-based memory and logic devices.

6.
Nat Nanotechnol ; 14(3): 232-236, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30664756

RESUMEN

In the presence of a magnetic field, the flow of charged particles in a conductor is deflected from the direction of the applied force, which gives rise to the ordinary Hall effect. Analogously, moving skyrmions with non-zero topological charges and finite fictitious magnetic fields exhibit the skyrmion Hall effect, which is detrimental for applications such as skyrmion racetrack memory. It was predicted that the skyrmion Hall effect vanishes for antiferromagnetic skyrmions because their fictitious magnetic field, proportional to net spin density, is zero. Here we investigate the current-driven transverse elongation of pinned ferrimagnetic bubbles. We estimate the skyrmion Hall effect from the angle between the current and the bubble elongation directions. The angle and, hence, the skyrmion Hall effect vanishes at the angular momentum compensation temperature where the net spin density vanishes. Furthermore, our study establishes a direct connection between the fictitious magnetic field and the spin density.

7.
Artículo en Inglés | MEDLINE | ID: mdl-29167703

RESUMEN

The information carrier of modern technologies is the electron charge whose transport inevitably generates Joule heating. Spin-waves, the collective precessional motion of electron spins, do not involve moving charges and thus avoid Joule heating [1-3]. In this respect, magnonic devices in which the information is carried by spin-waves attract interest for low-power computing. However implementation of magnonic devices for practical use suffers from low spin-wave signal and on/off ratio. Here we demonstrate that cubic anisotropy materials can enhance spin-wave signals by improving spin-wave amplitude as well as group velocity and attenuation length. Furthermore, cubic anisotropy material shows an enhanced on/off ratio through a laterally localized edge mode, which closely mimics the gate-controlled conducting channel in traditional field-effect transistors. These attractive features of cubic anisotropy materials will invigorate magnonics research towards wave-based functional devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA