Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nucleic Acids Res ; 52(6): 3146-3163, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38349040

RESUMEN

Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN , Proteínas de Xenopus , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Activación Enzimática/genética , Fosforilación/genética
2.
J Biol Chem ; 300(3): 105751, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354779

RESUMEN

Eukaryotic DNA clamp is a trimeric protein featuring a toroidal ring structure that binds DNA on the inside of the ring and multiple proteins involved in DNA transactions on the outside. Eukaryotes have two types of DNA clamps: the replication clamp PCNA and the checkpoint clamp RAD9-RAD1-HUS1 (9-1-1). 9-1-1 activates the ATR-CHK1 pathway in DNA damage checkpoint, regulating cell cycle progression. Structure of 9-1-1 consists of two moieties: a hetero-trimeric ring formed by PCNA-like domains of three subunits and an intrinsically disordered C-terminal region of the RAD9 subunit, called RAD9 C-tail. The RAD9 C-tail interacts with the 9-1-1 ring and disrupts the interaction between 9-1-1 and DNA, suggesting a negative regulatory role for this intramolecular interaction. In contrast, RHINO, a 9-1-1 binding protein, interacts with both RAD1 and RAD9 subunits, positively regulating checkpoint activation by 9-1-1. This study presents a biochemical and structural analysis of intra- and inter-molecular interactions on the 9-1-1 ring. Biochemical analysis indicates that RAD9 C-tail binds to the hydrophobic pocket on the PCNA-like domain of RAD9, implying that the pocket is involved in multiple protein-protein interactions. The crystal structure of the 9-1-1 ring in complex with a RHINO peptide reveals that RHINO binds to the hydrophobic pocket of RAD9, shedding light on the RAD9-binding motif. Additionally, the study proposes a structural model of the 9-1-1-RHINO quaternary complex. Together, these findings provide functional insights into the intra- and inter-molecular interactions on the front side of RAD9, elucidating the roles of RAD9 C-tail and RHINO in checkpoint activation.


Asunto(s)
Proteínas Portadoras , Proteínas de Ciclo Celular , Complejos Multiproteicos , Subunidades de Proteína , Humanos , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN/metabolismo , Daño del ADN , Reparación del ADN , Interacciones Hidrofóbicas e Hidrofílicas , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Dominios Proteicos
3.
J Biol Chem ; 299(4): 103061, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841485

RESUMEN

The RAD9-RAD1-HUS1 complex (9-1-1) is a eukaryotic DNA clamp with a crucial role at checkpoints for DNA damage. The ring-like structure of 9-1-1 is opened for loading onto 5' recessed DNA by the clamp loader RAD17 RFC-like complex (RAD17-RLC), in which the RAD17 subunit is responsible for specificity to 9-1-1. Loading of 9-1-1 is required for activation of the ATR-CHK1 checkpoint pathway and the activation is stimulated by a 9-1-1 interacting protein, RHINO, which interacts with 9-1-1 via a recently identified RAD1-binding motif. This discovery led to the hypothesis that other interacting proteins may contain a RAD1-binding motif as well. Here, we show that vertebrate RAD17 proteins also have a putative RAD1-binding motif in their N-terminal regions, and we report the crystal structure of human 9-1-1 bound to a human RAD17 peptide incorporating the motif at 2.1 Å resolution. Our structure confirms that the N-terminal region of RAD17 binds to the RAD1 subunit of 9-1-1 via specific interactions. Furthermore, we show that the RAD1-binding motif of RHINO disturbs the interaction of the N-terminal region of RAD17 with 9-1-1. Our results provide deeper understanding of how RAD17-RLC specifically recognizes 9-1-1 and imply that RHINO has a functional role in 9-1-1 loading/unloading and checkpoint activation.


Asunto(s)
Proteínas Portadoras , Proteínas de Ciclo Celular , Exonucleasas , Humanos , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Exonucleasas/metabolismo
4.
J Biol Chem ; 295(4): 899-904, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31776186

RESUMEN

DNA clamp, a highly conserved ring-shaped protein, binds dsDNA within its central pore. Also, DNA clamp interacts with various nuclear proteins on its front, thereby stimulating their enzymatic activities and biological functions. It has been assumed that the DNA clamp is a functionally single-faced ring from bacteria to humans. Here, we report the crystal structure of the heterotrimeric RAD9-RAD1-HUS1 (9-1-1) checkpoint clamp bound to a peptide of RHINO, a recently identified cancer-related protein that interacts with 9-1-1 and promotes activation of the DNA damage checkpoint. This is the first structure of 9-1-1 bound to its partner. The structure reveals that RHINO is unexpectedly bound to the edge and around the back of the 9-1-1 ring through specific interactions with the RAD1 subunit of 9-1-1. Our finding indicates that 9-1-1 is a functionally double-faced DNA clamp.


Asunto(s)
Ciclo Celular , ADN/metabolismo , Péptidos/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Humanos , Modelos Moleculares , Péptidos/química , Unión Proteica
5.
Genes Cells ; 24(9): 608-618, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31233675

RESUMEN

Replication initiation at specific genomic loci dictates precise duplication and inheritance of genetic information. In eukaryotic cells, ATP-bound origin recognition complexes (ORCs) stably bind to double-stranded (ds) DNA origins to recruit the replicative helicase onto the origin DNA. To achieve these processes, an essential region of the origin DNA must be recognized by the eukaryotic origin sensor (EOS) basic patch within the disordered domain of the largest ORC subunit, Orc1. Although ORC also binds single-stranded (ss) DNA in an EOS-independent manner, it is unknown whether EOS regulates ORC on ssDNA. We found that, in budding yeast, ORC multimerizes on ssDNA in vitro independently of adenine nucleotides. We also found that the ORC multimers form in an EOS-dependent manner and stimulate the ORC ATPase activity. An analysis of genomics data supported the idea that ORC-ssDNA binding occurs in vivo at specific genomic loci outside of replication origins. These results suggest that EOS function is differentiated by ORC-bound ssDNA, which promotes ORC self-assembly and ATP hydrolysis. These mechanisms could modulate ORC activity at specific genomic loci and could be conserved among eukaryotes.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN de Cadena Simple/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN , Unión Proteica , Multimerización de Proteína , Origen de Réplica , Saccharomyces cerevisiae
6.
Nucleic Acids Res ; 45(8): 4550-4563, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28199690

RESUMEN

The alternative proliferating-cell nuclear antigen (PCNA)-loader CTF18-RFC forms a stable complex with DNA polymerase ε (Polε). We observed that, under near-physiological conditions, CTF18-RFC alone loaded PCNA inefficiently, but loaded it efficiently when complexed with Polε. During efficient PCNA loading, CTF18-RFC and Polε assembled at a 3΄ primer-template junction cooperatively, and directed PCNA to the loading site. Site-specific photo-crosslinking of directly interacting proteins at the primer-template junction showed similar cooperative binding, in which the catalytic N-terminal portion of Polε acted as the major docking protein. In the PCNA-loading intermediate with ATPγS, binding of CTF18 to the DNA structures increased, suggesting transient access of CTF18-RFC to the primer terminus. Polε placed in DNA synthesis mode using a substrate DNA with a deoxidised 3΄ primer end did not stimulate PCNA loading, suggesting that DNA synthesis and PCNA loading are mutually exclusive at the 3΄ primer-template junction. Furthermore, PCNA and CTF18-RFC-Polε complex engaged in stable trimeric assembly on the template DNA and synthesised DNA efficiently. Thus, CTF18-RFC appears to be involved in leading-strand DNA synthesis through its interaction with Polε, and can load PCNA onto DNA when Polε is not in DNA synthesis mode to restore DNA synthesis.


Asunto(s)
Proteínas Portadoras/genética , ADN Polimerasa II/genética , ADN/genética , Proteínas Nucleares/genética , Antígeno Nuclear de Célula en Proliferación/genética , Proteína de Replicación C/genética , ATPasas Asociadas con Actividades Celulares Diversas , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , ADN/metabolismo , ADN Polimerasa II/metabolismo , Cartilla de ADN/genética , Cartilla de ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Proteínas Nucleares/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicación C/metabolismo
7.
Genes Cells ; 21(5): 482-91, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26987677

RESUMEN

Human Ctf18-RFC, a PCNA loader complex, interacts with DNA polymerase ε (Polε) through a structure formed by the Ctf18, Dcc1 and Ctf8 subunits. The C-terminal stretch of Ctf18, which is highly conserved from yeast to human, is necessary to form the Polε-capturing structure. We found that in the budding yeast Saccharomyces cerevisiae, Ctf18, Dcc1 and Ctf8 formed the same structure through the conserved C-terminus and interacted specifically with Polε. Thus, the specific interaction of Ctf18-RFC with Polε is a conserved feature between these proteins. A C-terminal deletion mutant of Ctf18 (ctf18(ΔC) ) exhibited the same high sensitivity to hydroxyurea as the complete deletion strain (ctf18Δ) or ATPase-deficient mutant (ctf18(K189A) ), but was somewhat less sensitive to methyl methanesulfonate than either of them. These phenotypes were also observed in dcc1Δ and ctf8Δ, predicted to be deficient in the interaction with Polε. Furthermore, both plasmid loss and gross chromosomal rearrangement (GCR) rates were increased in ctf18(ΔC) cells to the same extent as in ctf18Δ cells. These results indicate that the Ctf18-RFC/Polε interaction plays a crucial role in maintaining genome stability in budding yeast, probably through recruitment of this PCNA loader to the replication fork.


Asunto(s)
ADN Polimerasa II/metabolismo , Inestabilidad Genómica , Proteína de Replicación C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animales , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Ratones , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo
8.
Adv Exp Med Biol ; 1042: 135-162, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29357057

RESUMEN

Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.


Asunto(s)
Replicación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Eucariontes/genética , Células Eucariotas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Complejo de Reconocimiento del Origen/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteína de Replicación C/metabolismo
9.
J Biol Chem ; 290(32): 19923-32, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26088138

RESUMEN

The human checkpoint clamp Rad9-Hus1-Rad1 (9-1-1) is loaded onto chromatin by its loader complex, Rad17-RFC, following DNA damage. The 120-amino acid (aa) stretch of the Rad9 C terminus (C-tail) is unstructured and projects from the core ring structure (CRS). Recent studies showed that 9-1-1 and CRS bind DNA independently of Rad17-RFC. The DNA-binding affinity of mutant 9(ΔC)-1-1, which lacked the Rad9 C-tail, was much higher than that of wild-type 9-1-1, suggesting that 9-1-1 has intrinsic DNA binding activity that manifests in the absence of the C-tail. C-tail added in trans interacted with CRS and prevented it from binding to DNA. We narrowed down the amino acid sequence in the C-tail necessary for CRS binding to a 15-aa stretch harboring two conserved consecutive phenylalanine residues. We prepared 9-1-1 mutants containing the variant C-tail deficient for CRS binding, and we demonstrated that the mutant form restored DNA binding as efficiently as 9(ΔC)-1-1. Furthermore, we mapped the sequence necessary for TopBP1 binding within the same 15-aa stretch, demonstrating that TopBP1 and CRS share the same binding region in the C-tail. Indeed, we observed their competitive binding to the C-tail with purified proteins. The importance of interaction between 9-1-1 and TopBP1 for DNA damage signaling suggests that the competitive interactions of TopBP1 and CRS with the C-tail will be crucial for the activation mechanism.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Reparación del ADN , ADN/metabolismo , Exonucleasas/metabolismo , Sitios de Unión , Unión Competitiva , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/química , ADN/química , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exonucleasas/genética , Expresión Génica , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Transducción de Señal
10.
Nucleic Acids Res ; 41(3): 1649-60, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23248005

RESUMEN

Human DNA polymerases η and ι are best characterized for their ability to facilitate translesion DNA synthesis (TLS). Both polymerases (pols) co-localize in 'replication factories' in vivo after cells are exposed to ultraviolet light and this co-localization is mediated through a physical interaction between the two TLS pols. We have mapped the polη-ι interacting region to their respective ubiquitin-binding domains (UBZ in polη and UBM1 and UBM2 in polι), and demonstrate that ubiquitination of either TLS polymerase is a prerequisite for their physical and functional interaction. Importantly, while monoubiquitination of polη precludes its ability to interact with proliferating cell nuclear antigen (PCNA), it enhances its interaction with polι. Furthermore, a polι-ubiquitin chimera interacts avidly with both polη and PCNA. Thus, the ubiquitination status of polη, or polι plays a key regulatory function in controlling the protein partners with which each polymerase interacts, and in doing so, determines the efficiency of targeting the respective polymerase to stalled replication forks where they facilitate TLS.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Ubiquitina/metabolismo , Sitios de Unión , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Humanos , Modelos Moleculares , Mutación , Dominios y Motivos de Interacción de Proteínas , ADN Polimerasa iota
11.
J Biol Chem ; 287(12): 9613-22, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22303021

RESUMEN

The DNA synthesis across DNA lesions, termed translesion synthesis (TLS), is a complex process influenced by various factors. To investigate this process in mammalian cells, we examined TLS across a benzo[a]pyrene dihydrodiol epoxide-derived dG adduct (BPDE-dG) using a plasmid bearing a single BPDE-dG and genetically engineered mouse embryonic fibroblasts (MEFs). In wild-type MEFs, TLS was extremely miscoding (>90%) with G → T transversions being predominant. Knockout of the Rev1 gene decreased both the TLS efficiency and the miscoding frequency. Knockout of the Rev3L gene, coding for the catalytic subunit of pol ζ, caused even greater decreases in these two TLS parameters; almost all residual TLS were error-free. Thus, REV1 and pol ζ are critical to mutagenic, but not accurate, TLS across BPDE-dG. The introduction of human REV1 cDNA into Rev1(-/-) MEFs restored the mutagenic TLS, but a REV1 mutant lacking the C terminus did not. Yeast and mammalian three-hybrid assays revealed that the REV7 subunit of pol ζ mediated the interaction between REV3 and the REV1 C terminus. These results support the hypothesis that REV1 recruits pol ζ through the interaction with REV7. Our results also predict the existence of a minor REV1-independent pol ζ recruitment pathway. Finally, although mutagenic TLS across BPDE-dG largely depends on RAD18, experiments using Polk(-/-) Polh(-/-) Poli(-/-) triple-gene knockout MEFs unexpectedly revealed that another polymerase(s) could insert a nucleotide opposite BPDE-dG. This indicates that a non-Y family polymerase(s) can insert a nucleotide opposite BPDE-dG, but the subsequent extension from miscoding termini depends on REV1-polζ in a RAD18-dependent manner.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Mutagénesis , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/análogos & derivados , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Aductos de ADN/genética , Daño del ADN , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/genética , Humanos , Proteínas Mad2 , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutagénesis/efectos de los fármacos , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/genética , Proteínas/metabolismo , Alineación de Secuencia
12.
Genes Cells ; 17(10): 807-16, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22925454

RESUMEN

A heteromeric proliferating cell nuclear antigen-like ring complex 9-1-1 is comprised of Rad9, Hus1 and Rad1. When assembled, 9-1-1 binds to TopBP1 and activates the ATR-Chk1 checkpoint pathway. This binding in vitro depends on the phosphorylation of Ser-341 and Ser-387 in Rad9 and is reduced to 70% and 20% by an alanine substitution for Ser-341 (S341A) and Ser-387 (S387A), respectively, and to background level by their simultaneous substitution (2A). Here, we show the importance of phosphorylation of these two serine residues in vivo. siRNA-mediated knockdown of Rad9 in HeLa cells impaired UV-induced phosphorylation of checkpoint kinase, Chk1, and conferred hypersensitivity to UV irradiation and to methyl methane sulfonate or hydroxyurea treatments. Either siRNA-resistant wild-type Rad9 (Rad9R(r)) or Rad9R(r) harboring the S341A substitution restored the phosphorylation of Chk1 and damage sensitivity, whereas Rad9R(r) harboring S387A or 2A did not. However, high expression of S387A restored Chk1 phosphorylation and partially suppressed the hypersensitivity. Thus, the affinity of Rad9 to TopBP1 correlates with the activation of the cellular DNA damage response and survival after DNA damage in HeLa cells, and phosphorylation of Ser-341 and Ser-387 of Rad9 is critical for full activation of the checkpoint response to DNA damage.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Serina/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Células HeLa , Humanos , Hidroxiurea/farmacología , Metilmetanosulfonato/farmacología , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo , Interferencia de ARN , Rayos Ultravioleta/efectos adversos
13.
J Biol Chem ; 285(45): 34608-15, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20826785

RESUMEN

One of the proliferating cell nuclear antigen loader complexes, Ctf18-replication factor C (RFC), is involved in sister chromatid cohesion. To examine its relationship with factors involved in DNA replication, we performed a proteomics analysis of Ctf18-interacting proteins. We found that Ctf18 interacts with a replicative DNA polymerase, DNA polymerase ε (pol ε). Co-immunoprecipitation with recombinant Ctf18-RFC and pol ε demonstrated that their binding is direct and mediated by two distinct interactions, one weak and one stable. Three subunits that are specifically required for cohesion in yeast, Ctf18, Dcc1, and Ctf8, formed a trimeric complex (18-1-8) and together enabled stable binding with pol ε. The C-terminal 23-amino acid stretch of Ctf18 was necessary for the trimeric association of 18-1-8 and was required for the stable interaction. The weak interaction was observed with alternative loader complexes including Ctf18-RFC(5), which lacks Dcc1 and Ctf8, suggesting that the common loader structures, including the RFC small subunits (RFC2-5), are responsible for the weak interaction. The two interaction modes, mediated through distinguishable structures of Ctf18-RFC, both occurred through the N-terminal half of pol ε, which includes the catalytic domain. The addition of Ctf18-RFC or Ctf18-RFC(5) to the DNA synthesis reaction caused partial inhibition and stimulation, respectively. Thus, Ctf18-RFC has multiple interactions with pol ε that promote polymorphic modulation of DNA synthesis. We propose that their interaction alters the DNA synthesis mode to enable the replication fork to cooperate with the establishment of cohesion.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Polimerasa II/metabolismo , Replicación del ADN/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Sitios de Unión , Proteínas Portadoras/genética , ADN/biosíntesis , ADN/genética , ADN Polimerasa II/genética , Células HeLa , Humanos , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Antígeno Nuclear de Célula en Proliferación/genética , Proteína de Replicación C/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Genes Cells ; 15(3): 281-96, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20088965

RESUMEN

Polζ, a DNA polymerase specialized for translesion DNA synthesis (TLS), is comprised of two subunits, the REV3 catalytic subunit and the REV7 accessory subunit. The human REV7 (hREV7) protein is known to interact with hREV3, hREV1 (another TLS protein) and some other proteins such as ADAM9 (a disintegrin and metalloprotease) and ELK-1 (an Ets-like transcription factor). hREV7 is alternatively termed hMAD2L2, because its primary sequence shows 26% identity to that of hMAD2 that plays crucial roles in spindle assembly checkpoint (SAC) via interactions with hMAD1 or hCDC20. Here, we have investigated the molecular basis for the interactions of hREV7/MAD2L2 and hMAD2 with their binding partners. Our results showed that a short sequence of hREV3 is necessary and sufficient for interaction with hREV7. Surprisingly, hMAD2 also binds to the hREV7-binding sequence in hREV3, whereas hMAD2 does not bind to a similar sequence in ADAM9 or ELK-1 and hREV7 does not bind to the hMAD2-binding sequence in hMAD1 or hCDC20. We discuss how hREV7 and hMAD2 recognize their binding partners, and how hREV3 and hREV7 might be involved in SAC.


Asunto(s)
Proteínas Mad2/metabolismo , Proteínas ADAM/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Proteínas de la Membrana/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína Elk-1 con Dominio ets/metabolismo
15.
Genes Cells ; 15(7): 761-71, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20545769

RESUMEN

The checkpoint clamp Rad9-Hus1-Rad1 (9-1-1) is loaded by the Rad17-RFC complex onto chromatin after DNA damage and plays a key role in the ATR-dependent checkpoint activation. Here, we demonstrate that in vitro casein kinase 2 (CK2) specifically interacts with human 9-1-1 and phosphorylates serines 341 and 387 (Ser-341 and Ser-387) in the C-terminal tail of Rad9. Interestingly, phosphorylated Ser-387 has previously been reported to be required for interacting with a checkpoint mediator TopBP1. Indeed, 9-1-1 purified from Escherichia coli and phosphorylated in vitro by CK2 physically interacts with TopBP1. Further analyses showed that phosphorylation at both serine residues occurs in vivo and is required for the efficient interaction with TopBP1 in vitro. Furthermore, when over-expressed in HeLa cells, a mutant Rad9 harboring phospho-deficient substitutions at both Ser-341 and Ser-387 residues causes hypersensitivity to UV and methyl methane sulfonate (MMS). Our observations suggest that CK2 plays a crucial role in the ATR-dependent checkpoint pathway through its ability to phosphorylate Ser-341 and Ser-387 of the Rad9 subunit of the 9-1-1 complex.


Asunto(s)
Proteínas Portadoras/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Exonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Quinasa de la Caseína II/aislamiento & purificación , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Células Cultivadas , Células HeLa , Humanos , Mutación , Fosforilación , Serina/metabolismo
16.
Genes Cells ; 15(12): 1228-39, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21070511

RESUMEN

DNA polymerase δ (Polδ) carries out DNA replication with extremely high accuracy. This great fidelity primarily depends on the efficient exclusion of incorrect base pairs from the active site of the polymerase domain. In addition, the 3'-5' exonuclease activity of Polδ further enhances its accuracy by eliminating misincorporated nucleotides. It is believed that these enzymatic properties also inhibit Polδ from inserting nucleotides opposite damaged templates. To test this widely accepted idea, we examined in vitro DNA synthesis by human Polδ enzymes proficient and deficient in the exonuclease activity. We chose the UV-induced lesions cyclobutyl pyrimidine dimer (CPD) and 6-4 pyrimidone photoproduct (6-4 PP) as damaged templates. 6-4 PP represents the most formidable challenge to DNA replication, and no single eukaryotic DNA polymerase has been shown to bypass 6-4 PP in vitro. Unexpectedly, we found that Polδ can perform DNA synthesis across both 6-4 PP and CPD even with a physiological concentration of deoxyribonucleotide triphosphates (dNTPs). DNA synthesis across 6-4 PP was often accompanied by a nucleotide deletion and was highly mutagenic. This unexpected enzymatic property of Polδ in the bypass of UV photoproducts challenges the received notion that the accuracy of Polδ prevents bypassing damaged templates.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/efectos de la radiación , Rayos Ultravioleta , Humanos , Procesos Fotoquímicos/efectos de la radiación , Dímeros de Pirimidina/genética , Moldes Genéticos
17.
DNA Repair (Amst) ; 8(5): 585-99, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19157994

RESUMEN

Defects in the gene encoding human Poleta result in xeroderma pigmentosum variant (XP-V), an inherited cancer-prone syndrome. Poleta catalyzes efficient and accurate translesion DNA synthesis (TLS) past UV-induced lesions. In addition to Poleta, human cells have multiple TLS polymerases such as Poliota, Polkappa, Polzeta and REV1. REV1 physically interacts with other TLS polymerases, but the physiological relevance of the interaction remains unclear. Here we developed an antibody that detects the endogenous REV1 protein and found that human cells contain about 60,000 of REV1 molecules per cell as well as Poleta. In un-irradiated cells, formation of nuclear foci by ectopically expressed REV1 was enhanced by the co-expression of Poleta. Importantly, the endogenous REV1 protein accumulated at the UV-irradiated areas of nuclei in Poleta-expressing cells but not in Poleta-deficient XP-V cells. UV-irradiation induced nuclear foci of REV1 and Poleta proteins in both S-phase and G1 cells, suggesting that these proteins may function both during and outside S phase. We reconstituted XP-V cells with wild-type Poleta or with Poleta mutants harboring substitutions in phenylalanine residues critical for interaction with REV1. The REV1-interaction-deficient Poleta mutant failed to promote REV1 accumulation at sites of UV-irradiation, yet (similar to wild-type Poleta) corrected the UV sensitivity of XP-V cells and suppressed UV-induced mutations. Interestingly however, spontaneous mutations of XP-V cells were only partially suppressed by the REV1-interaction deficient mutant of Poleta. Thus, Poleta-REV1 interactions prevent spontaneous mutations, probably by promoting accurate TLS past endogenous DNA lesions, while the interaction is dispensable for accurate Poleta-mediated TLS of UV-induced lesions.


Asunto(s)
Núcleo Celular/metabolismo , Daño del ADN/efectos de la radiación , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Western Blotting , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Técnica del Anticuerpo Fluorescente , Fase G1 , Células HeLa , Humanos , Inmunoprecipitación , Proteínas Nucleares/genética , Inhibidores de la Síntesis del Ácido Nucleico , Nucleotidiltransferasas/genética , ARN Interferente Pequeño/farmacología , Fase S , Rayos Ultravioleta
18.
Genes Cells ; 14(2): 101-11, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19170759

RESUMEN

When a replicative DNA polymerase (Pol) is stalled by damaged DNA, a "polymerase switch" recruits specialized translesion synthesis (TLS) DNA polymerase(s) to sites of damage. Mammalian cells have several TLS DNA polymerases, including the four Y-family enzymes (Poleta, Poliota, Polkappa and REV1) that share multiple primary sequence motifs, but show preferential bypass of different DNA lesions. REV1 interacts with Poleta, Poliota, and Polkappa and therefore appears to play a central role during TLS in vivo. Here we have investigated the molecular basis for interactions between REV1 and Polkappa. We have identified novel REV1-interacting regions (RIRs) present in Polkappa, Poliota and Poleta. Within the RIRs, the presence of two consecutive phenylalanines (FF) is essential for REV1-binding. The consensus sequence for REV1-binding is denoted by x-x-x-F-F-y-y-y-y (x, no specific residue and y, no specific residue but not proline). Our results identify structural requirements that are necessary for FF-flanking residues to confer interactions with REV1. A Polkappa mutant lacking REV1-binding activity did not complement the genotoxin-sensitivity of Polk-null mouse embryonic fibroblast cells, thereby demonstrating that the REV1-interaction is essential for Polkappa function in vivo.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Nucleotidiltransferasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células Cultivadas , ADN Polimerasa Dirigida por ADN/fisiología , Ratones , Datos de Secuencia Molecular , Nucleotidiltransferasas/química , Unión Proteica , Mapeo de Interacción de Proteínas , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Técnicas del Sistema de Dos Híbridos , Levaduras
19.
Can J Microbiol ; 56(8): 676-82, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20725130

RESUMEN

The presence of any Listeria species in food may be an indicator of poor hygiene in food processing facilities. The biochemical identification of Listeria species is laborious and time consuming. Therefore, the development of novel identification methods that are rapid and simple to perform would be an asset. In this study, large intergenic spacer region amplicons of 343-374 bp were generated from 207 Listeria isolates. The melting curve analysis of these amplicons specifically classified all isolates into 6 Listeria species and generated 11 high-resolution melting (HRM) curve profiles. In this study, 3 HRM profiles were found in Listeria monocytogenes and Listeria innocua, and 2 were found in Listeria seeligeri. Sequencing of the amplicons representing these profiles revealed that each profile related to a unique sequence. The smallest difference recognized in this study was 1 nt. The results represented in this study show that HRM curve analysis of Listeria intergenic spacer sequences is a simple, quick, and reproducible method of simultaneously identifying 6 Listeria species and screening for variants. In particular, the completion of both reaction and analysis in a closed tube saves time by eliminating the separate steps and lowers the risk of contamination.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Espaciador Ribosómico/genética , Genes de ARNr , Listeria/clasificación , Secuencia de Bases , ADN Bacteriano/genética , Genes Bacterianos , Listeria/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Temperatura de Transición
20.
Bioorg Med Chem ; 17(5): 1811-6, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19223184

RESUMEN

Penicilliols A (1) and B (2) are novel 5-methoxy-3(2H)-furanones isolated from cultures of a fungus (Penicillium daleae K.M. Zalessky) derived from a sea moss, and their structures were determined by spectroscopic analyses. These compounds selectively inhibited activities of eukaryotic Y-family DNA polymerases (pols) (i.e., pols eta, iota and kappa), and compound 1 was a stronger inhibitor than compound 2. Among mammalian Y-family pols, mouse pol iota activity was most strongly inhibited by compounds 1 and 2, with IC(50) values of 19.8 and 32.5 microM, respectively. On the other hand, activities of many other pols, such as A-family (i.e., pol gamma), B-family (i.e., pols alpha, delta and epsilon) or X-family (i.e., pols beta, lambda and terminal deoxynucleotidyl transferase), and some DNA metabolic enzymes, such as calf primase of pol alpha, human immunodeficiency virus type-1 (HIV-1) reverse transcriptase, human telomerase, T7 RNA polymerase, mouse IMP dehydrogenase (type II), human topoisomerases I and II, T4 polynucleotide kinase or bovine deoxyribonuclease I, are not influenced by these compounds. In conclusion, this is the first report on potent inhibitors of mammalian Y-family pols.


Asunto(s)
Inhibidores Enzimáticos/química , Lactonas/química , Inhibidores de la Síntesis del Ácido Nucleico , Penicillium/química , Animales , Bovinos , ADN Polimerasa Dirigida por ADN/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Cinética , Lactonas/aislamiento & purificación , Lactonas/farmacología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA