Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(42): 23143-23151, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844138

RESUMEN

High-mobility group box 1 (HMGB1) is a multifunctional protein. Upon injury or infection, HMGB1 is passively released from necrotic and activated dendritic cells and macrophages, where it functions as a cytokine, acting as a ligand for RAGE, a major receptor of innate immunity stimulating inflammation responses including the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Blocking the HMGB1/RAGE axis offers a therapeutic approach to treating these inflammatory conditions. Here, we describe a synthetic antibody (SA), a copolymer nanoparticle (NP) that binds HMGB1. A lightly cross-linked N-isopropylacrylamide (NIPAm) hydrogel copolymer with nanomolar affinity for HMGB1 was selected from a small library containing trisulfated 3,4,6S-GlcNAc and hydrophobic N-tert-butylacrylamide (TBAm) monomers. Competition binding experiments with heparin established that the dominant interaction between SA and HMGB1 occurs at the heparin-binding domain. In vitro studies established that anti-HMGB1-SA inhibits HMGB1-dependent ICAM-1 expression and ERK phosphorylation of HUVECs, confirming that SA binding to HMGB1 inhibits the proteins' interaction with the RAGE receptor. Using temporary middle cerebral artery occlusion (t-MCAO) model rats, anti-HMGB1-SA was found to accumulate in the ischemic brain by crossing the blood-brain barrier. Significantly, administration of anti-HMGB1-SA to t-MCAO rats dramatically reduced brain damage caused by cerebral ischemia/reperfusion. These results establish that a statistical copolymer, selected from a small library of candidates synthesized using an "informed" selection of functional monomers, can yield a functional synthetic antibody. The knowledge gained from these experiments can facilitate the discovery, design, and development of a new category of drug.


Asunto(s)
Isquemia Encefálica , Proteína HMGB1 , Daño por Reperfusión , Ratas , Animales , Proteína HMGB1/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Inflamación/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Heparina/metabolismo
2.
Biochem Biophys Res Commun ; 561: 1-6, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34004514

RESUMEN

Synthetic polymers prepared using several functional monomers have attracted attention as cost-effective protein affinity reagents and alternative to antibodies. We previously reported the synthesis of poly NIPAm-based nanoparticles (NPs) using several functional monomers that can capture target molecules. In this study, we designed NPs for capturing glucose and inhibiting intestinal absorption in living mice. For capturing glucose, we focused on the Maillard reaction between primary amines and aldehyde residues. We hypothesized that the primary amine-containing NPs can capture the open-chain structure of glucose via the Maillard reaction and inhibit intestinal absorption. NPs were prepared by the precipitation polymerization of NIPAm, N-tert-butylacrylamide (TBAm), trifluoroacetate-protected N-(3-aminopropyl)methacrylamide (T-APM), and N,N'-methylenebisacrylamide. Then, T-APM in NPs was deprotected by NH3 (aq). The amount of glucose captured by NPs depended on the percentage of TBAm and APM in vitro. After 24 h, only 2% of orally administered NPs remained in the body after administration, suggesting that many NPs were excreted without being absorbed. The prepared NPs significantly inhibited an increase in blood glucose concentration after the oral administration of glucose and NPs, indicating that NPs capture glucose and inhibit intestinal absorption. These results show the potential of using synthetic polymer nanoparticles for inhibiting postprandial hyperglycemia.


Asunto(s)
Acrilamidas/química , Glucosa/metabolismo , Absorción Intestinal/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Polímeros/química , Administración Oral , Animales , Glucosa/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos BALB C , Distribución Tisular
3.
Biomacromolecules ; 20(4): 1644-1654, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30848887

RESUMEN

Synthetic polymers are of interest as stable and cost-effective biomolecule-affinity reagents, since these polymers interact with target biomolecules both in vitro and in the bloodstream. However, little has been reported about orally administered polymers capable of capturing a target molecule and inhibiting its intestinal absorption. Here, we describe the design of synthetic polymer nanoparticles (NPs) specifically capturing indole, a major factor exacerbating chronic kidney disease, in the intestine. N-isopropylacrylamide-based NPs were prepared with various hydrophobic monomers. The amounts of indole captured by NPs depended on the structures and feed ratios of the hydrophobic monomers and the polymer density but not on the particle size. The combination of hydrophobic and quadrupole interaction was effective to enhance the affinity and specificity of NPs for indole. The optimized NPs specifically inhibited intestinal absorption of orally administered indole in mice. These results showed the potential of synthetic polymer NPs for inhibiting the intestinal absorption of a target molecule.


Asunto(s)
Indoles/química , Nanopartículas/química , Células CACO-2 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/toxicidad , Absorción Intestinal , Tamaño de la Partícula
4.
Sci Rep ; 13(1): 10782, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402762

RESUMEN

Non-invasive delivery of hyaluronan into the stratum corneum (SC) is extremely difficult because of its high molecular weight and the strong barrier of the SC. We developed a safe method of administering hyaluronan into the human SC and determined its penetration route. The amount of hyaluronan that penetrated into the SC was 1.5-3 times higher in the presence of magnesium chloride hexahydrate (MgCl2) than other metal chlorides. The root-mean-square radius of hyaluronan in water decreased with the addition of MgCl2. Moreover, MgCl2 solutions maintained their dissolved state on a plastic plate for a long time, suggesting that size compaction and inhibition of hyaluronan precipitation on the skin enhanced hyaluronan into the SC. Our results also strongly suggest that an intercellular route contributes to the penetration of hyaluronan from the upper to the middle layer of the SC. No disruption to the SC barrier was observed after continuous use once a day for 1 month, demonstrating the potential of our method for the safe, topical application of hyaluronan.


Asunto(s)
Epidermis , Ácido Hialurónico , Humanos , Cloruro de Magnesio , Peso Molecular , Piel
5.
Nat Commun ; 12(1): 5552, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548486

RESUMEN

Sepsis is a life-threatening condition caused by the extreme release of inflammatory mediators into the blood in response to infection (e.g., bacterial infection, COVID-19), resulting in the dysfunction of multiple organs. Currently, there is no direct treatment for sepsis. Here we report an abiotic hydrogel nanoparticle (HNP) as a potential therapeutic agent for late-stage sepsis. The HNP captures and neutralizes all variants of histones, a major inflammatory mediator released during sepsis. The highly optimized HNP has high capacity and long-term circulation capability for the selective sequestration and neutralization of histones. Intravenous injection of the HNP protects mice against a lethal dose of histones through the inhibition of platelet aggregation and migration into the lungs. In vivo administration in murine sepsis model mice results in near complete survival. These results establish the potential for synthetic, nonbiological polymer hydrogel sequestrants as a new intervention strategy for sepsis therapy and adds to our understanding of the importance of histones to this condition.


Asunto(s)
Hidrogeles/uso terapéutico , Nanopartículas/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Plaquetas/efectos de los fármacos , Adhesión Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Histonas/toxicidad , Hidrogeles/química , Hidrogeles/metabolismo , Hidrogeles/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratones , Nanopartículas/química , Nanopartículas/metabolismo , Agregación Plaquetaria/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Unión Proteica , Sepsis/mortalidad , Tasa de Supervivencia
6.
J Control Release ; 295: 13-20, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30578808

RESUMEN

Protein affinity reagents (PARs), frequently antibodies, are essential tools for basic research, diagnostics, separations and for clinical applications. However, there is growing concern about the reproducibility, quality and cost of recombinant and animal-derived antibodies. This has prompted the development of alternatives that could offer economic, and time-saving advantages without the use of living organisms. Synthetic copolymer nanoparticles (NPs), engineered with affinity for specific protein targets, are potential alternatives to PARs. Although there are now a number of examples of abiotic protein affinity reagents (APARs), most have been evaluated in vitro limiting a realistic assessment of their potential for more demanding, practical in vivo applications. We demonstrate for the first time that an abiotic copolymer hydrogel nanoparticle (NP1) engineered to bind a key signaling protein, vascular endothelial growth factor (VEGF165), functions in vivo to suppress tumor growth by regulating angiogenesis. Lightly cross-linked N-isopropylacrylamide based NPs that incorporate both sulfated N-acetylglucosamine and hydrophobic monomers were optimized by dynamic chemical evolution for VEGF165 affinity. NP1 efficacy in vivo was evaluated by systemic administration to tumor-bearing mice. The study found that NP1 suppresses tumor growth and reduces tumor vasculature density. Combination therapy with doxorubicin resulted in increased doxorubicin concentration in the tumor and dramatic inhibition of tumor growth. NP1 treatment did not show off target anti-coagulant activity. In addition, >97% of injected NPs are rapidly excreted from the body following IV injection. These results establish the use of APARs as inhibitors of protein-protein interactions in vivo and may point the way to their broader use as abiotic, cost effective protein affinity reagents for the treatment of certain cancers and more broadly for regulating signal transduction.


Asunto(s)
Acrilamidas/uso terapéutico , Inhibidores de la Angiogénesis/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Acrilamidas/administración & dosificación , Acrilamidas/química , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/química , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Humanos , Masculino , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
J Control Release ; 268: 335-342, 2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29061513

RESUMEN

Many of macromolecular toxins induce cell death by directly interacting with cells or induction of inflammatory cytokines. Abiotic polymer ligands (PLs) composed of functional monomers are able to bind and neutralize toxins in vivo and are of great interest for efficient antidotes. However, little has been reported about recognition and neutralization of target molecules in the bloodstream because of readily elimination from the bloodstream. Here, we report a rational design of PLs-decorated lipid nanoparticles (PL-NPs) for neutralizing a target toxin in vivo. PL that decorated on the NPs would cooperatively interacts with target biomacromolecules since the lipid molecules in NPs have a high degree of freedom. In the present study, N-isopropylacrylamide based PLs interacting with histones, major mediators of sepsis, were synthesized. Affinity between PL-NPs and histones depends on monomer composition and polymer length. The optimized PL-NP showed little affinity for plasma proteins. The PL-NPs inhibited the toxicity of histones both in vitro and in vivo, suggesting that PLs on the NPs cooperatively bound to histones and neutralized their toxicity. In addition, circulation time of optimized PL was significantly prolonged by the modification onto NPs. These results provide a platform for designing antidote nanoparticles neutralizing toxic biomacromolecules.


Asunto(s)
Antídotos/administración & dosificación , Histonas/toxicidad , Nanopartículas/administración & dosificación , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Ligandos , Lípidos/administración & dosificación , Masculino , Ratones Endogámicos BALB C , Polímeros/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA