Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 22(18): 21508-20, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25321529

RESUMEN

We present the theoretical description of the image formation with the in-line germanium Bragg Magnifier Microscope (BMM) and the first successful phase retrieval of X-ray holograms recorded with this imaging system. The conditions under which the BMM acts as a linear shift invariant system are theoretically explained and supported by the experiment. Such an approach simplifies the mathematical treatment of the image formation and reconstruction as complicated propagation of the wavefront onto inclined planes can be avoided. Quantitative phase retrieval is demonstrated using a test sample and a proof of concept phase imaging of a spider leg is also presented.

2.
Sci Rep ; 10(1): 10366, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32587288

RESUMEN

To travel safely behind screens that can protect us from stones and hail, we must understand the response of glass to impact. However, without a means to observe the mechanisms that fail different silicate architectures, engineering has relied on external sensors, post-impact examination and best-guess to glaze our vehicles. We have used single and multi-bunch, X-ray imaging to differentiate distinct phases of failure in two silicates. We identified distinct micromechanisms, operating in tandem and leading to failure in borosilicate glass and Z-cut quartz. A surface zone in the amorphous glass densifies before bulk fracture occurs and then fails the block, whilst in quartz, fast cracks, driven down cleavage planes, fails the bulk. Varying the rate at which ejecta escapes by using different indenter tip geometries controls the failed target's bulk strength. This opens the way to more physically based constitutive descriptions for the glasses allowing design of safer, composite panels by controlling the impulses felt by protective screens.

3.
Sci Rep ; 10(1): 8455, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439927

RESUMEN

Extraordinary states of highly localised pressure and temperature can be generated upon the collapse of impulsively driven cavities. Direct observation of this phenomenon in solids has proved challenging, but recent advances in high-speed synchrotron radiography now permit the study of highly transient, subsurface events in real time. We present a study on the shock-induced collapse of spherical cavities in a solid polymethyl methacrylate medium, driven to shock states between 0.49 and 16.60 GPa. Utilising multi-MHz phase contrast radiography, extended sequences of the collapse process have been captured, revealing new details of interface motion, material failure and jet instability formation. Results reveal a rich array of collapse characteristics dominated by strength effects at low shock pressures and leading to a hydrodynamic response at the highest loading conditions.

4.
Rev Sci Instrum ; 90(1): 013504, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30709224

RESUMEN

We describe the first use of synchrotron radiation to probe pulsed power driven high energy density physics experiments. Multi-frame x-ray radiography with interframe spacing of 704 ns and temporal resolution of <100 ps was used to diagnose the electrical explosion of different wire configurations in water including single copper and tungsten wires, parallel copper wire pairs, and copper x-pinches. Such experiments are of great interest to a variety of areas including equation of state studies and high pressure materials research, but the optical diagnostics that are usually employed in these experiments are unable to probe the areas behind the shock wave generated in the water, as well as the internal structure of the exploding material. The x-ray radiography presented here, performed at beamline ID19 at European Synchrotron Radiation Facility (ESRF), was able to image both sides of the shock to a resolution of up to 8 µm, and phase contrast imaging allowed fine details of the wire structure during the current driven explosion and the shock waves to be clearly observed. These results demonstrate the feasibility of pulsed power operated in conjunction with synchrotron facilities, as well as an effective technique in the study of shock waves and wire explosion dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA