Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Pathol ; 259(3): 318-330, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484652

RESUMEN

Vasculogenic mimicry (VM) describes the ability of highly aggressive tumor cells to develop pseudovascular structures without the participation of endothelial cells. PARP1 is implicated in the activation of hypoxia-inducible factors, which are crucial in tumor neovascularization. We have explored the role of hypoxia and PARP inhibition in VM. In uveal melanoma xenografts, the PARP inhibitor olaparib improved in vivo pericyte coverage specifically of VM channels. This was concomitant with reduced metastasis in olaparib-treated VM+ tumors. PARP inhibition and hypoxia modulated melanoma tube formation in vitro, inducing a more sparse and regular tubular architecture. Whole-transcriptome profiling revealed that olaparib treatment under hypoxic conditions modulated the expression of genes implicated in vasculogenesis during tube formation, enhancing the endothelial-like phenotype of VM+ uveal melanoma cells. PARP inhibition, especially during hypoxia, upregulated PDGFß, which is essential for pericyte recruitment. Our study indicates that PARP inhibitors may enhance the endothelial characteristics of VM+ cells, modulate pericyte coverage, and reduce metastatic spread in VM+ melanoma. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Melanoma , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Células Endoteliales/metabolismo , Pericitos/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Neovascularización Patológica/patología , Fenotipo , Línea Celular Tumoral
2.
Mol Cancer ; 17(1): 122, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111323

RESUMEN

BACKGROUND: We have recently shown that radiotherapy may not only be a successful local and regional treatment but, when combined with MSCs, may also be a novel systemic cancer therapy. This study aimed to investigate the role of exosomes derived from irradiated MSCs in the delay of tumor growth and metastasis after treatment with MSC + radiotherapy (RT). METHODS: We have measured tumor growth and metastasis formation, of subcutaneous human melanoma A375 xenografts on NOD/SCID-gamma mice, and the response of tumors to treatment with radiotherapy (2 Gy), mesenchymal cells (MSC), mesenchymal cells plus radiotherapy, and without any treatment. Using proteomic analysis, we studied the cargo of the exosomes released by the MSC treated with 2 Gy, compared with the cargo of exosomes released by MSC without treatment. RESULTS: The tumor cell loss rates found after treatment with the combination of MSC and RT and for exclusive RT, were: 44.4% % and 12,1%, respectively. Concomitant and adjuvant use of RT and MSC, increased the mice surviving time 22,5% in this group, with regard to the group of mice treated with exclusive RT and in a 45,3% respect control group. Moreover, the number of metastatic foci found in the internal organs of the mice treated with MSC + RT was 60% less than the mice group treated with RT alone. We reasoned that the exosome secreted by the MSC, could be implicated in tumor growth delay and metastasis control after treatment. CONCLUSIONS: Our results show that exosomes derived form MSCs, combined with radiotherapy, are determinant in the enhancement of radiation effects observed in the control of metastatic spread of melanoma cells and suggest that exosome-derived factors could be involved in the bystander, and abscopal effects found after treatment of the tumors with RT plus MSC. Radiotherapy itself may not be systemic, although it might contribute to a systemic effect when used in combination with mesenchymal stem cells owing the ability of irradiated MSCs-derived exosomes to increase the control of tumor growth and metastasis.


Asunto(s)
Exosomas/metabolismo , Melanoma/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Radioterapia/métodos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Terapia Combinada , Humanos , Células MCF-7 , Melanoma/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Proteómica , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Cancer ; 16(1): 65, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28320399

RESUMEN

Vasculogenic mimicry (VM) is a blood supply system independent of endothelial vessels in tumor cells from different origins. It reflects the plasticity of aggressive tumor cells that express vascular cell markers and line tumor vasculature. The presence of VM is associated with a high tumor grade, short survival, invasion and metastasis. Endothelial cells (ECs) express various members of the cadherin superfamily, in particular vascular endothelial (VE-) cadherin, which is the main adhesion receptor of endothelial adherent junctions. Aberrant extra-vascular expression of VE-cadherin has been observed in certain cancer types associated with VM. In this review we focus on non-endothelial VE-cadherin as a prominent factor involved in the acquisition of tubules-like structures by aggressive tumor cells and we summarize the specific signaling pathways, the association with trans-differentiation and stem-like phenotype and the therapeutic opportunities derived from the in-depth knowledge of the peculiarities of the biology of VE-cadherin and other key components of VM.


Asunto(s)
Neoplasias/irrigación sanguínea , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Transducción de Señal , Animales , Biomarcadores , Cadherinas/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Transición Epitelial-Mesenquimal , Humanos , Hipoxia/metabolismo , Neoplasias/patología , Microambiente Tumoral
4.
PLoS Genet ; 9(6): e1003531, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23785295

RESUMEN

PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-ß-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Melanoma Experimental/genética , Poli(ADP-Ribosa) Polimerasas/genética , Vimentina , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Neoplasias de la Mama/patología , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Perros , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células MCF-7 , Melanoma Experimental/patología , Ratones , Invasividad Neoplásica/genética , Metástasis de la Neoplasia , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Vimentina/genética , Vimentina/metabolismo
5.
ScientificWorldJournal ; 2013: 486574, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24319370

RESUMEN

We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.


Asunto(s)
Isquemia/patología , Riñón/irrigación sanguínea , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Daño por Reperfusión/prevención & control , Animales , Western Blotting , Frío , Isoquinolinas/farmacología , Riñón/patología , Riñón/ultraestructura , Necrosis Tubular Aguda/patología , Necrosis Tubular Aguda/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/fisiología , Daño por Reperfusión/patología
6.
Cancers (Basel) ; 14(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35681719

RESUMEN

Hyperoxia is used in order to counteract hypoxia effects in the TME (tumor microenvironment), which are described to boost the malignant tumor phenotype and poor prognosis. The reduction of tumor hypoxic state through the formation of a non-aberrant vasculature or an increase in the toxicity of the therapeutic agent improves the efficacy of therapies such as chemotherapy. Radiotherapy efficacy has also improved, where apoptotic mechanisms seem to be implicated. Moreover, hyperoxia increases the antitumor immunity through diverse pathways, leading to an immunopermissive TME. Although hyperoxia is an approved treatment for preventing and treating hypoxemia, it has harmful side-effects. Prolonged exposure to high oxygen levels may cause acute lung injury, characterized by an exacerbated immune response, and the destruction of the alveolar-capillary barrier. Furthermore, under this situation, the high concentration of ROS may cause toxicity that will lead not only to cell death but also to an increase in chemoattractant and proinflammatory cytokine secretion. This would end in a lung leukocyte recruitment and, therefore, lung damage. Moreover, unregulated inflammation causes different consequences promoting tumor development and metastasis. This process is known as protumor inflammation, where different cell types and molecules are implicated; for instance, IL-1ß has been described as a key cytokine. Although current results show benefits over cancer therapies using hyperoxia, further studies need to be conducted, not only to improve tumor regression, but also to prevent its collateral damage.

7.
J Exp Clin Cancer Res ; 40(1): 144, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910596

RESUMEN

Tankyrase 1 (TNKS1) and tankyrase 2 (TNKS2) are two homologous proteins that are gaining increasing importance due to their implication in multiple pathways and diseases such as cancer. TNKS1/2 interact with a large variety of substrates through the ankyrin (ANK) domain, which recognizes a sequence present in all the substrates of tankyrase, called Tankyrase Binding Motif (TBM). One of the main functions of tankyrases is the regulation of protein stability through the process of PARylation-dependent ubiquitination (PARdU). Nonetheless, there are other functions less studied that are also essential in order to understand the role of tankyrases in many pathways. In this review, we concentrate in different tankyrase substrates and we analyze in depth the biological consequences derived of their interaction with TNKS1/2. We also examine the concept of both canonical and non-canonical TBMs and finally, we focus on the information about the role of TNKS1/2 in different tumor context, along with the benefits and limitations of the current TNKS inhibitors targeting the catalytic PARP domain and the novel strategies to develop inhibitors against the ankyrin domain. Available data indicates the need for further deepening in the knowledge of tankyrases to elucidate and improve the current view of the role of these PARP family members and get inhibitors with a better therapeutic and safety profile.


Asunto(s)
Neoplasias/terapia , Tanquirasas/metabolismo , Humanos
8.
Redox Biol ; 41: 101885, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33581682

RESUMEN

BACKGROUND: The adaptation to hypoxia is mainly controlled by the HIF transcription factors. Increased expression/activity of HIF-1α correlates with poor prognosis in cancer patients. PARP-1 inhibitors are used in the clinic to treat BRCAness breast/ovarian cancer and have been shown to regulate the hypoxic response; therefore, their use could be expanded. METHODS: In this work by integrating molecular/cell biology approaches, genome-wide ChIP-seq, and patient samples, we elucidate the extent to which PARP-1 exerts control over HIF-1-regulated genes. RESULTS: In human melanoma, PARP-1 and HIF-1α expression are strongly associated. In response to a hypoxic challenge poly(ADP-ribose) (PAR) is synthesized, HIF-1α is post-transcriptionally modified (PTM) and stabilized by PARylation at specific K/R residues located at its C-terminus. Using an unbiased ChIP-seq approach we demonstrate that PARP-1 dictates hypoxia-dependent HIF-recruitment to chromatin in a range of HIF-regulated genes while analysis of HIF-binding motifs (RCGTG) reveals a restriction on the recognition of hypoxia responsive elements in the absence of PARP-1. Consequently, the cells are poorly adapted to hypoxia, showing a reduced fitness during hypoxic induction. CONCLUSIONS: These data characterize the fine-tuning regulation by PARP-1/PARylation of HIF activation and suggest that PARP inhibitors might have therapeutic potential against cancer types displaying HIF-1α over-activation.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Hipoxia de la Célula , Cromatina , Femenino , Humanos , Hipoxia
9.
Front Oncol ; 10: 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117706

RESUMEN

Aberrant extra-vascular expression of VE-cadherin has been observed in metastasis associated with Vasculogenic Mimicry (VM); we have recently shown that in VM prone cells VE-cadherin is mainly in the form of phospho-VE-cadherin in Y658 allowing increased plasticity that potentiates VM development in malignant cells. In the current study, we present results to show that human malignant melanoma cells VM+, express the VE-cadherin phosphatase VE-PTP. VE-PTP forms a complex with VE-Cadherin and p120-catenin and the presence of this complex act as a safeguard to prevent VE-Cadherin protein degradation by autophagy. Indeed, VE-PTP silencing results in complete degradation of VE-cadherin with the features of autophagy. In summary, this study shows that VE-PTP is involved in VM formation and disruption of VE-PTP/VE-Cadherin/p120 complex results in enhanced autophagy in aggressive VM+ cells. Thus, we identify VE-PTP as a key player in VM development by regulating VE-cadherin protein degradation through autophagy.

10.
Sci Rep ; 10(1): 6361, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286485

RESUMEN

Olive oil intake has been linked with a lower incidence of breast cancer. Hypoxic microenvironment in solid tumors, such as breast cancer, is known to play a crucial role in cancer progression and in the failure of anticancer treatments. HIF-1 is the foremost effector in hypoxic response, and given that hydroxytyrosol (HT) is one of the main bioactive compounds in olive oil, in this study we deepen into its modulatory role on HIF-1. Our results in MCF-7 breast cancer cells demonstrate that HT decreases HIF-1α protein, probably by downregulating oxidative stress and by inhibiting the PI3K/Akt/mTOR pathway. Strikingly, the expression of HIF-1 target genes does not show a parallel decrease. Particularly, adrenomedullin and vascular endothelial growth factor are up-regulated by high concentrations of HT even in HIF-1α silenced cells, pointing to HIF-1-independent mechanisms of regulation. In fact, we show, by in silico modelling and transcriptional analysis, that high doses of HT may act as an agonist of the aryl hydrocarbon receptor favoring the induction of these angiogenic genes. In conclusion, we suggest that the effect of HT in a hypoxic environment is largely affected by its concentration and involves both HIF-1 dependent and independent mechanisms.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Aceite de Oliva/farmacología , Fenol/farmacología , Alcohol Feniletílico/análogos & derivados , Neoplasias de la Mama/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Aceite de Oliva/química , Fenol/química , Alcohol Feniletílico/metabolismo , Alcohol Feniletílico/farmacología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
11.
Cell Death Dis ; 11(11): 954, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159039

RESUMEN

Parp3 is a member of the Poly(ADP-ribose) polymerase (Parp) family that has been characterized for its functions in strand break repair, chromosomal rearrangements, mitotic segregation and tumor aggressiveness. Yet its physiological implications remain unknown. Here we report a central function of Parp3 in the regulation of redox homeostasis in continuous neurogenesis in mice. We show that the absence of Parp3 provokes Nox4-induced oxidative stress and defective mTorc2 activation leading to inefficient differentiation of post-natal neural stem/progenitor cells to astrocytes. The accumulation of ROS contributes to the decreased activity of mTorc2 as a result of an oxidation-induced and Fbxw7-mediated ubiquitination and degradation of Rictor. In vivo, mTorc2 signaling is compromised in the striatum of naïve post-natal Parp3-deficient mice and 6 h after acute hypoxia-ischemia. These findings reveal a physiological function of Parp3 in the tight regulation of striatal oxidative stress and mTorc2 during astrocytic differentiation and in the acute phase of hypoxia-ischemia.


Asunto(s)
Astrocitos/citología , Diferenciación Celular , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , NADPH Oxidasa 4/metabolismo , Neurogénesis , Poli(ADP-Ribosa) Polimerasas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Astrocitos/metabolismo , Regulación de la Expresión Génica , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Noqueados , NADPH Oxidasa 4/genética , Transducción de Señal
12.
Front Oncol ; 9: 803, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31508365

RESUMEN

Blood vessels supply all body tissues with nutrients and oxygen, take away waste products and allow the arrival of immune cells and other cells (pericytes, smooth muscle cells) that form part of these vessels around the principal endothelial cells. Vasculogenic mimicry (VM) is a tumor blood supply system that takes place independently of angiogenesis or endothelial cells, and is associated with poor survival in cancer patients. Aberrant expression of VE-cadherin has been strongly associated with VM. Even more, VE-cadherin has constitutively high phosphorylation levels on the residue of Y658 in human malignant melanoma cells. In this review we focus on non-endothelial VE-cadherin and its post-translational modifications as a crucial component in the development of tumor VM, highlighting the signaling pathways that lead to their pseudo-endothelial and stem-like phenotype and the role of tumor microenvironment. We discuss the importance of the tumor microenvironment in VM acquisition, and describe the most recent therapeutic targets that have been proposed for the repression of VM.

13.
Cell Death Differ ; 26(2): 348-361, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29786069

RESUMEN

Aberrant extra-vascular expression of VE-cadherin (VEC) has been observed in metastasis associated with vasculogenic mimicry (VM); however, the ultimate reason why non-endothelial VEC favors the acquisition of this phenotype is not established. In this study, we show that human malignant melanoma cells have a constitutively high expression of phoshoVEC (pVEC) at Y658; pVEC is a target of focal adhesion kinase (FAK) and forms a complex with p120-catenin and the transcriptional repressor kaiso in the nucleus. FAK inhibition enabled kaiso to suppress the expression of its target genes and enhanced kaiso recruitment to KBS-containing promoters. Finally we have found that ablation of kaiso-repressed genes WNT11 and CCDN1 abolished VM. Thus, identification of pVEC as a component of the kaiso transcriptional complex establishes a molecular paradigm that links FAK-dependent phosphorylation of VEC as a major mechanism by which ectopical VEC expression exerts its function in VM.


Asunto(s)
Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Expresión Génica , Melanoma/genética , Neovascularización Patológica/genética , Neoplasias Cutáneas/genética , Factores de Transcripción/genética , Cateninas/metabolismo , Línea Celular Tumoral , Ciclina D1/genética , Quinasa 1 de Adhesión Focal/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Melanoma/patología , Fosforilación , Neoplasias Cutáneas/patología , Transducción Genética , Proteínas Wnt/genética , Catenina delta
14.
Cell Death Dis ; 10(2): 51, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30718520

RESUMEN

Glioblastoma (GBM) is the most common and aggressive brain tumor and is associated with poor prognosis. GBM cells are frequently resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and finding new combinatorial therapies to sensitize glioma cells to TRAIL remains an important challenge. PIM kinases are serine/threonine kinases that promote cell survival and proliferation and are highly expressed in different tumors. In this work, we studied the role of PIM kinases as regulators of TRAIL sensitivity in GBM cells. Remarkably, PIM inhibition or knockdown facilitated activation by TRAIL of a TRAIL-R2/DR5-mediated and mitochondria-operated apoptotic pathway in TRAIL-resistant GBM cells. The sensitizing effect of PIM knockdown on TRAIL-induced apoptosis was mediated by enhanced caspase-8 recruitment to and activation at the death-inducing signaling complex (DISC). Interestingly, TRAIL-induced internalization of TRAIL-R2/DR5 was significantly reduced in PIM knockdown cells. Phospho-proteome profiling revealed a decreased phosphorylation of p62/SQSTM1 after PIM knockdown. Our results also showed an interaction between p62/SQSTM1 and the DISC that was reverted after PIM knockdown. In line with this, p62/SQSTM1 ablation increased TRAIL-R2/DR5 levels and facilitated TRAIL-induced caspase-8 activation, revealing an inhibitory role of p62/SQSTM1 in TRAIL-mediated apoptosis in GBM. Conversely, upregulation of TRAIL-R2/DR5 upon PIM inhibition and apoptosis induced by the combination of PIM inhibitor and TRAIL were abrogated by a constitutively phosphorylated p62/SQSTM1S332E mutant. Globally, our data represent the first evidence that PIM kinases regulate TRAIL-induced apoptosis in GBM and identify a specific role of p62/SQSTM1Ser332 phosphorylation in the regulation of the extrinsic apoptosis pathway activated by TRAIL.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Sequestosoma-1/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Transfección
15.
J Cell Biochem ; 104(6): 2248-60, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18459142

RESUMEN

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear protein that, once activated by genotoxic agents, modulates the activity of several nuclear proteins including itself. Previous studies have established that PARP-1 inhibition may provide benefit in the treatment of different diseases, particularly those involving a hypoxic situation, in which an increased oxidative and nitrosative stress occurs. One of the most important transcription factors involved in the response to the hypoxic situation is the hypoxia-inducible factor-1 (HIF-1). The activity of HIF-1 is determined by the accumulation of its alpha subunit which is regulated, in part, by oxidative stress (ROS) and nitric oxide (NO), both of them highly dependent on PARP-1. Besides, HIF-1alpha can be induced by iron chelators such as deferoxamine (DFO). In this sense, the therapeutical use of DFO to strengthen the post-hypoxic response has recently been proposed. Taking into account the increasing interest and potential clinical applications of PARP inhibition and DFO treatment, we have evaluated the impact of PARP-1 on HIF-1alpha accumulation induced by treatment with DFO. Our results show that, in DFO treated cells, PARP-1 gene deletion or inhibition decreases HIF-1alpha accumulation. This lower HIF-1alpha stabilization is parallel to a decreased inducible NO synthase induction and NO production, a higher response of some antioxidant enzymes (particularly glutathione peroxidase and glutathione reductase) and a lower ROS level. Taken together, these results suggest that the absence of PARP-1 modulates HIF-1 accumulation by reducing both NO and oxidative stress.


Asunto(s)
Deferoxamina/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Adrenomedulina/genética , Adrenomedulina/metabolismo , Animales , Antioxidantes/metabolismo , Western Blotting , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Microscopía Confocal , Modelos Biológicos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/deficiencia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Termodinámica , Factores de Tiempo
16.
Cancer Res ; 66(11): 5744-56, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16740713

RESUMEN

Poly(ADP-ribose) polymerase (PARP)-1, an enzyme that catalyzes the attachment of ADP ribose to target proteins, acts as a component of enhancer/promoter regulatory complexes. In the present study, we show that pharmacologic inhibition of PARP-1 with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) results in a strong delay in tumor formation and in a dramatic reduction in tumor size and multiplicity during 7,12-dimethylbenz(a)anthracene plus 12-O-tetradecanoylphorbol-13-acetate-induced skin carcinogenesis. This observation was parallel with a reduction in the skin inflammatory infiltrate in DPQ-treated mice and tumor vasculogenesis. Inhibition of PARP also affected activator protein-1 (AP-1) activation but not nuclear factor-kappaB (NF-kappaB). Using cDNA expression array analysis, a substantial difference in key tumor-related gene expression was found between chemically induced mice treated or not with PARP inhibitor and also between wild-type and parp-1 knockout mice. Most important differences were found in gene expression for Nfkbiz, S100a9, Hif-1alpha, and other genes involved in carcinogenesis and inflammation. These results were corroborated by real-time PCR. Moreover, the transcriptional activity of hypoxia-inducible factor-1alpha (HIF-1alpha) was compromised by PARP inhibition or in PARP-1-deficient cells, as measured by gene reporter assays and the expression of key target genes for HIF-1alpha. Tumor vasculature was also strongly inhibited in PARP-1-deficient mice and by DPQ. In summary, this study shows that inhibition of PARP on itself is able to control tumor growth, and PARP inhibition or genetic deletion of PARP-1 prevents from tumor promotion through their ability to cooperate with the activation AP-1, NF-kappaB, and HIF-1alpha.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/prevención & control , Animales , Carcinógenos , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/genética , ADN de Neoplasias/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Isoquinolinas/farmacología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Acetato de Tetradecanoilforbol , Factor de Transcripción AP-1/metabolismo
17.
BMC Mol Biol ; 8: 29, 2007 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-17459151

RESUMEN

ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adenosina Difosfato/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , Ratones , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/deficiencia , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética
18.
Stem Cells Int ; 2017: 2389753, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28250776

RESUMEN

Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS). Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs) in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs) suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS-) induced maturation of dendritic cells (DCs) in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG) E2 in this process. In vivo, early administration of murine and human ASCs (hASCs) ameliorated myelin oligodendrocyte protein- (MOG35-55-) induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+) DCs in draining lymph nodes (DLNs). In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.

19.
Biochem J ; 386(Pt 1): 119-25, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15456408

RESUMEN

p53 deficiency confers resistance to doxo (doxorubicin), a clinically active and widely used antitumour anthracycline antibiotic. The purpose of the present study was to investigate the reversal mechanism of doxo resistance by the potent PARP [poly(ADP-ribose) polymerase] inhibitor ANI (4-amino-1,8-naphthalimide) in the p53-deficient breast cancer cell lines EVSA-T and MDA-MB-231. The effects of ANI, in comparison with doxo alone, on doxo-induced apoptosis, were investigated in matched pairs of EVSA-T or MDA-MB-231 with or without ANI co-treatment. Doxo elicited PARP activation as determined by Western blotting and immunofluorescence of poly(ADP-ribose), and ANI enhanced the cytotoxic activity of doxo 2.3 times and in a caspase-dependent manner. The long-term cytotoxic effect was studied by a colony-forming assay. Using this assay, ANI also significantly potentiates the long-term cytotoxic effect with respect to treatment with doxo alone. Decrease in mitochondrial potential together with an increase in cytochrome c release, association of Bax with the mitochondria and caspase 3 activation were also observed in the presence of ANI. Therefore PARP inhibition may represent a novel way of selectively targeting p53-deficient breast cancer cells. The underlying mechanism is probably a potentiation of unrepaired DNA damage, shifting from DNA repair to apoptosis due to the effective inhibition of PARP activity.


Asunto(s)
1-Naftilamina/análogos & derivados , 1-Naftilamina/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Quinolonas/farmacología , Proteína p53 Supresora de Tumor/deficiencia , Neoplasias de la Mama/genética , Caspasa 3 , Caspasas/metabolismo , Sinergismo Farmacológico , Femenino , Genes p53 , Humanos , Membranas Intracelulares/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Naftalimidas , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células Tumorales Cultivadas/efectos de los fármacos , Células Tumorales Cultivadas/metabolismo , Ensayo de Tumor de Célula Madre , Proteína X Asociada a bcl-2
20.
Cell Death Differ ; 23(12): 2007-2018, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27689873

RESUMEN

AMPK is a central energy sensor linking extracellular milieu fluctuations with the autophagic machinery. In the current study we uncover that Poly(ADP-ribosyl)ation (PARylation), a post-translational modification (PTM) of proteins, accounts for the spatial and temporal regulation of autophagy by modulating AMPK subcellular localisation and activation. More particularly, we show that the minority AMPK pool needs to be exported to the cytosol in a PARylation-dependent manner for optimal induction of autophagy, including ULK1 phosphorylation and mTORC1 inactivation. PARP-1 forms a molecular complex with AMPK in the nucleus in non-starved cells. In response to nutrient deprivation, PARP-1 catalysed PARylation, induced the dissociation of the PARP-1/AMPK complex and the export of free PARylated nuclear AMPK to the cytoplasm to activate autophagy. PARP inhibition, its silencing or the expression of PARylation-deficient AMPK mutants prevented not only the AMPK nuclear-cytosolic export but also affected the activation of the cytosolic AMPK pool and autophagosome formation. These results demonstrate that PARylation of AMPK is a key early signal to efficiently convey extracellular nutrient perturbations with downstream events needed for the cell to optimize autophagic commitment before autophagosome formation.


Asunto(s)
Adenilato Quinasa/metabolismo , Autofagia , Núcleo Celular/metabolismo , Poli ADP Ribosilación , Transporte Activo de Núcleo Celular/efectos de los fármacos , Adenilato Quinasa/química , Secuencia de Aminoácidos , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Núcleo Celular/efectos de los fármacos , Citosol/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Silenciador del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Biológicos , Poli ADP Ribosilación/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA