Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev E ; 108(1-1): 014128, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37583134

RESUMEN

A study of the effect of thermal dissipation on quantum reinforcement learning is performed. For this purpose, a nondissipative quantum reinforcement learning protocol is adapted to the presence of thermal dissipation. Analytical calculations as well as numerical simulations are carried out, obtaining evidence that dissipation does not significantly degrade the performance of the quantum reinforcement learning protocol for sufficiently low temperatures, in some cases even being beneficial. Quantum reinforcement learning under realistic experimental conditions of thermal dissipation opens an avenue for the realization of quantum agents to be able to interact with a changing environment, as well as adapt to it, with many plausible applications inside quantum technologies and machine learning.

2.
Phys Rev E ; 104(6-1): 064204, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030830

RESUMEN

In this paper we bring out the existence of a kind of synchronization associated with the size of a complex system. A dichotomic random jump process associated with the dynamics of an externally driven stochastic system with N coupled units is constructed. We define an output frequency and phase diffusion coefficient. System size synchronization occurs when the average output frequency is locked to the external one and the average phase diffusion coefficient shows a very deep minimum for a range of system sizes. Analytical and numerical procedures are introduced to study the phenomenon, and the results describe successfully the existence of system size synchronization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA