Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 97(4): 661-672, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30406958

RESUMEN

Volvox carteri and other volvocine green algae comprise an excellent model for investigating developmental complexity and its origins. Here we describe a method for targeted mutagenesis in V. carteri using CRISPR/Cas9 components expressed from transgenes. We used V. carteri nitrate reductase gene (nitA) regulatory sequences to conditionally express Streptococcus pyogenes Cas9, and V. carteri U6 RNA gene regulatory sequences to constitutively express single-guide RNA (sgRNA) transcripts. Volvox carteri was bombarded with both Cas9 vector and one of several sgRNA vectors programmed to target different test genes (glsA, regA and invA), and transformants were selected for expression of a hygromycin-resistance marker present on the sgRNA vector. Hygromycin-resistant transformants grown with nitrate as sole nitrogen source (inducing for nitA) were tested for Cas9 and sgRNA expression, and for the ability to generate progeny with expected mutant phenotypes. Some transformants of a somatic regenerator (Reg) mutant strain receiving sgRNA plasmid with glsA protospacer sequence yielded progeny (at a rate of ~0.01%) with a gonidialess (Gls) phenotype similar to that observed for previously described glsA mutants, and sequencing of the glsA gene in independent mutants revealed short deletions within the targeted region of glsA, indicative of Cas9-directed non-homologous end joining. Similarly, bombardment of a morphologically wild-type strain with the Cas9 plasmid and sgRNA plasmids targeting regA or invA yielded regA and invA mutant transformants/progeny, respectively (at rates of 0.1-100%). The capacity to make precisely directed frameshift mutations should greatly accelerate the molecular genetic analysis of development in V. carteri, and of developmental novelty in the volvocine algae.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Volvox/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Mutagénesis/genética , Mutagénesis/fisiología
2.
Protist ; 170(1): 52-63, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30576875

RESUMEN

Volvox carteri is an excellent model for investigating the evolution of multicellularity and cell differentiation, and the rate of future progress with this system will depend on improved molecular genetic tools. Several selectable markers for nuclear transformation of V. carteri have been developed, including the nitrate reductase (nitA) gene, but it would be useful to have additional markers to multiplex transgenes in this species. To further facilitate molecular genetic analyses of V. carteri, we developed two new selectable markers that provide rapid, easily selected, and stable resistance to the antibiotics hygromycin and blasticidin. We generated constructs with Volvox-specific regulatory sequences and codon-optimized hygromycin (VcHyg) and blasticidin (VcBlast) resistance genes from Coccidioides posadasii and Bacillus cereus, respectively. With these constructs, transformants were obtained via biolistic bombardment at rates of 0.5-13 per million target cells bombarded. Antibiotic-resistant survivors were readily isolated 7days post bombardment. VcHyg and VcBlast transgenes and transcripts were detected in transformants. Co-transformation rates using the VcHyg or VcBlast markers with unselected genes were comparable to those obtained with nitA. These results indicate that the pVcHyg and pVcBlast plasmids are highly efficient and convenient for transforming and co-transforming a broad range of V. carteri strains.


Asunto(s)
Antibacterianos/farmacología , Cinamatos/farmacología , Farmacorresistencia Microbiana/genética , Higromicina B/análogos & derivados , Transformación Genética/genética , Volvox/genética , Bacillus cereus/genética , Coccidioides/genética , Genes Bacterianos/genética , Genes Fúngicos/genética , Marcadores Genéticos/genética , Higromicina B/farmacología , Microorganismos Modificados Genéticamente/genética , Nucleósidos/farmacología , Transformación Genética/efectos de los fármacos , Volvox/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA