Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Molecules ; 28(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903519

RESUMEN

Terpenes and essential oils are materials of great commercial use due to their broad spectra of antibacterial, antifungal, membrane permeation enhancement and antioxidant biological properties, as well as for their use as flavors and fragrances. Yeast particles (YPs) are 3-5 µm hollow and porous microspheres, a byproduct of some food-grade yeast (Saccharomyces cerevisiae) extract manufacturing processes, that have been used for the encapsulation of terpenes and essential oils with high payload loading capacity (up to 500% weight) and efficiency, providing stability and sustained-release properties. This review focuses on encapsulation approaches for the preparation of YP-terpene and essential oil materials that have a wide range of potential agricultural, food and pharmaceutical applications.


Asunto(s)
Aceites Volátiles , Terpenos , Saccharomyces cerevisiae
2.
J Immunol ; 204(12): 3296-3306, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32358020

RESUMEN

Coccidioides species are fungal pathogens that can cause a widely varied clinical manifestation from mild pulmonary symptom to disseminated, life-threatening disease. We have previously created a subunit vaccine by encapsulating a recombinant coccidioidal Ag (rCpa1) in glucan-chitin particles (GCPs) as an adjuvant-delivery system. The GCP-rCpa1 vaccine has shown to elicit a mixed Th1 and Th17 response and confers protection against pulmonary coccidioidomycosis in mice. In this study, we further delineated the vaccine-induced protective mechanisms. Depletion of IL-17A in vaccinated C57BL/6 mice prior to challenge abrogated the protective efficacy of GCP-rCpa1 vaccine. Global transcriptome and Ingenuity Pathway Analysis of murine bone marrow-derived macrophages after exposure to this vaccine revealed the upregulation of proinflammatory cytokines (TNF-α, IL-6, and IL-1ß) that are associated with activation of C-type lectin receptors (CLR) Dectin-1- and Dectin-2-mediated CARD9 signaling pathway. The GCP formulation of rCpa1 bound soluble Dectin-1 and Dectin-2 and triggered ITAM signaling of corresponding CLR reporter cells. Furthermore, macrophages that were isolated from Dectin-1 -/-, Dectin-2 -/-, and CARD9 -/- mice significantly reduced production of inflammatory cytokines in response to the GCP-rCpa1 vaccine compared with those of wild-type mice. The GCP-rCpa1 vaccine had significantly reduced protective efficacy in Dectin-1 -/-, Dectin-2 -/-, and CARD9 -/- mice that showed decreased acquisition of Th cells in Coccidioides-infected lungs compared with vaccinated wild-type mice, especially Th17 cells. Collectively, we conclude that the GCP-rCpa1 vaccine stimulates a robust Th17 immunity against Coccidioides infection through activation of the CARD9-associated Dectin-1 and Dectin-2 signal pathways.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/inmunología , Coccidioides/inmunología , Coccidioidomicosis/inmunología , Vacunas Fúngicas/inmunología , Lectinas Tipo C/inmunología , Vacunas Combinadas/inmunología , Animales , Coccidioidomicosis/microbiología , Coccidioidomicosis/prevención & control , Citocinas/inmunología , Femenino , Pulmón/inmunología , Pulmón/microbiología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Células Th17/inmunología
3.
J Biochem Mol Toxicol ; 36(1): e22941, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34726330

RESUMEN

This study aimed to assess the protective effect of encapsulating humic acid-iron complexed nanoparticles (HA-Fe NPs) inside glucanmannan lipid particles (GMLPs) extracted from yeast cell wall against aflatoxin B (AFB1 ) toxicity in vivo. Four groups of male Sprague-Dawley rats were treated orally for 2 weeks included the control group, AFB1 treated group (80 µg/kg b.w); GMLP/HA-Fe NPs treated group (0.5 mg/kg b.w), and the group treated with AFB1 plus GMLP/HA-Fe NPs. GMLPs are empty 3-4 micron permeable microspheres that provide an efficient system for the synthesis and encapsulation of AFB1 -absorbing nanoparticles (NPs). Humic acid nanoparticles (HA-NPs) were incorporated inside the GMLP cavity by complexation with ferric chloride. In vivo study revealed that AFB1 significantly elevated serum alanine aminotransferase, aspartate aminotransferase, creatinine, uric acid, urea, cholesterol, triglycerides, LDL, malondialdehyde, and nitric oxide. It significantly decreased total protein, high-density lipoprotein, hepatic and renal CAT and glutathione peroxidase content and induced histological changes in the liver and kidney (p ≤ 0.05). The coadministration of the synthesized formulation GMLP/HA-Fe NPs with AFB1 has a protective effect against AFB1 -induced hepato-nephrotoxicity, oxidative stress and histological alterations in the liver and kidney.


Asunto(s)
Aflatoxina B1 , Polisacáridos Fúngicos , Sustancias Húmicas , Nanopartículas , Saccharomyces cerevisiae/química , beta-Glucanos , Aflatoxina B1/farmacocinética , Aflatoxina B1/toxicidad , Animales , Polisacáridos Fúngicos/química , Polisacáridos Fúngicos/farmacología , Masculino , Nanopartículas/química , Nanopartículas/uso terapéutico , Ratas , Ratas Sprague-Dawley , beta-Glucanos/química , beta-Glucanos/farmacología
4.
Molecules ; 27(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684516

RESUMEN

Yeast particles (YPs) are 3−5 µm hollow and porous microspheres, a byproduct of some food grade yeast (Saccharomyces cerevisiae) extract manufacturing processes. Terpenes can be efficiently encapsulated inside YPs by passive diffusion through the porous cell walls. As previously published, this YP terpene encapsulation approach has been successfully implemented (1) to develop and commercialize fungicide and nematicide products for agricultural applications, (2) to co-load high potency agrochemical actives dissolved in terpenes or suitable solvents, and (3) to identify YP terpenes with broad-acting anthelmintic activity for potential pharmaceutical applications. These first-generation YP terpene materials were developed with a <2:1 terpene: YP weight ratio. Here we report methods to increase the terpene loading capacity in YPs up to 5:1 terpene: YP weight ratio. Hyper-loaded YP terpenes extend the kinetics of payload release up to three-fold compared to the commercialized YP terpene formulations. Hyper-loaded YP-terpene compositions were further optimized to achieve high terpene storage encapsulation stability from −20 °C to 54 °C. The development of hyper-loaded YP terpenes has a wide range of potential agricultural and pharmaceutical applications with terpenes and other compatible active substances that could benefit from a delivery system with a high payload loading capacity combined with increased payload stability and sustained release properties.


Asunto(s)
Desinfectantes , Terpenos , Composición de Medicamentos , Preparaciones Farmacéuticas/química , Saccharomyces cerevisiae , Terpenos/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-33318013

RESUMEN

Gastrointestinal nematodes (GINs) of humans, e.g., hookworms, negatively impact childhood growth, cognition, nutrition, educational attainment, income, productivity, and pregnancy. Hundreds of millions of people are targeted with mass drug administration (MDA) of donated benzimidazole anthelmintics. However, benzimidazole efficacy against GINs is suboptimal, and reduced/low efficacy has been seen. Developing an anthelmintic for human MDA is daunting: it must be safe, effective, inexpensive, stable without a cold chain, and massively scalable. Bacillus thuringiensis crystal protein 5B (Cry5B) has anthelmintic properties that could fill this void. Here, we developed an active pharmaceutical ingredient (API) containing B. thuringiensis Cry5B compatible with MDA. We expressed Cry5B in asporogenous B. thuringiensis during vegetative phase, forming cytosolic crystals. These bacteria with cytosolic crystals (BaCC) were rendered inviable (inactivated BaCC [IBaCC]) with food-grade essential oils. IBaCC potency was validated in vitro against nematodes. IBaCC was also potent in vivo against human hookworm infections in hamsters. IBaCC production was successfully scaled to 350 liters at a contract manufacturing facility. A simple fit-for-purpose formulation to protect against stomach digestion and powdered IBaCC were successfully made and used against GINs in hamsters and mice. A pilot histopathology study and blood chemistry workup showed that five daily consecutive doses of 200 mg/kg body weight Cry5B IBaCC (the curative single dose is 40 mg/kg) was nontoxic to hamsters and completely safe. IBaCC is a safe, inexpensive, highly effective, easy-to-manufacture, and scalable anthelmintic that is practical for MDA and represents a new paradigm for treating human GINs.


Asunto(s)
Antihelmínticos , Infecciones por Uncinaria , Nematodos , Parásitos , Animales , Antihelmínticos/uso terapéutico , Proteínas Bacterianas , Niño , Cricetinae , Infecciones por Uncinaria/tratamiento farmacológico , Humanos , Ratones
6.
Cell Immunol ; 366: 104383, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34111646

RESUMEN

For over 70 years experimental autoimmune encephalomyelitis (EAE) has been induced with myelin autoantigens emulsified in complete Freund's adjuvant (CFA) which has significant side effects such as pain, inflammation, and tissue necrosis at the injection site. ß-1,3-d-glucan particles (GPs) are hollow microcapsules prepared from Saccharomyces cerevisiae cell walls that induce potent Th17 cell responses without causing strong injection site tissue reactions. We evaluated the potential of GPs complexed with neuroantigens to induce EAE while avoiding undesirable side effects. GPs loaded with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) or proteolipid protein 139-151 (PLP139-151) peptides effectively induced EAE in C57BL/6 mice and SJL mice. Disease severity, CNS pathology and immune responses were comparable between GP- and CFA-immunized mice. Importantly, injection with GPs resulted in significantly decreased inflammation compared with CFA. We posit that use of GPs provides an alternative means for inducing EAE that results in comparable disease, but less discomfort to animals.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , Cápsulas/metabolismo , Pared Celular/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Proteoglicanos/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Adyuvante de Freund , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Proteína Proteolipídica de la Mielina/inmunología , Glicoproteína Mielina-Oligodendrócito/inmunología , Fragmentos de Péptidos/inmunología , Proteoglicanos/inmunología , Células Th17/inmunología
7.
Molecules ; 25(13)2020 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-32605043

RESUMEN

Soil-transmitted nematodes (STN) infect 1-2 billion of the poorest people worldwide. Only benzimidazoles are currently used in mass drug administration, with many instances of reduced activity. Terpenes are a class of compounds with anthelmintic activity. Thymol, a natural monoterpene phenol, was used to help eradicate hookworms in the U.S. South circa 1910. However, the use of terpenes as anthelmintics was discontinued because of adverse side effects associated with high doses and premature stomach absorption. Furthermore, the dose-response activity of specific terpenes against STNs has been understudied. Here we used hollow, porous yeast particles (YPs) to efficiently encapsulate (>95%) high levels of terpenes (52% w/w) and evaluated their anthelmintic activity on hookworms (Ancylostoma ceylanicum), a rodent parasite (Nippostrongylus brasiliensis), and whipworm (Trichuris muris). We identified YP-terpenes that were effective against all three parasites. Further, YP-terpenes overcame albendazole-resistant Caenorhabditis elegans. These results demonstrate that terpenes are broad-acting anthelmintics. Terpenes are predicted to be extremely difficult for parasites to resist, and YP encapsulation provides water-suspendable terpene materials without surfactants and sustained terpene release that could lead to the development of formulations for oral delivery that overcome fast absorption in the stomach, thus reducing dosage and toxic side effects.


Asunto(s)
Antihelmínticos/farmacología , Nematodos/efectos de los fármacos , Infecciones por Nematodos/tratamiento farmacológico , Terpenos/farmacología , Albendazol/química , Albendazol/farmacología , Ancylostoma/efectos de los fármacos , Ancylostoma/patogenicidad , Ancylostomatoidea/efectos de los fármacos , Ancylostomatoidea/patogenicidad , Animales , Antihelmínticos/química , Bencimidazoles/farmacología , Humanos , Nematodos/patogenicidad , Infecciones por Nematodos/parasitología , Infecciones por Nematodos/patología , Saccharomyces cerevisiae/química , Terpenos/química
8.
J Infect Dis ; 220(4): 615-623, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31184702

RESUMEN

Coccidioides is the causative agent of San Joaquin Valley fever, a fungal disease prevalent in the semiarid regions of the Americas. Efforts to develop a fungal vaccine over the last 2 decades were unsuccessful. A candidate antigen, Antigen 2 (Ag2), is notoriously difficult to express in Escherichia coli, and this study sought to accumulate the antigen at high levels in maize. Transformed maize lines accumulated recombinant Ag2 at levels >1 g/kg. Mice immunized with this antigen and challenged with live Coccidioides arthroconidia showed a reduction in the fungal load when Ag2 derived from either E. coli or maize was loaded into glucan chitin particles. A fusion of Ag2 to dendritic cell carrier peptide (DCpep) induced a T-helper type 17 response in the spleen when orally delivered, indicative of a protective immune response. The maize production platform and the glucan chitin particle adjuvant system show promise for development of a Coccidioides vaccine, but further testing is needed to fully assess the optimal method of administration.


Asunto(s)
Antígenos Fúngicos/inmunología , Coccidioides/inmunología , Coccidioidomicosis/prevención & control , Vacunas Fúngicas/inmunología , Glucanos/inmunología , Zea mays/metabolismo , Adyuvantes Inmunológicos , Animales , Quitina/genética , Quitina/inmunología , Coccidioides/genética , Coccidioidomicosis/microbiología , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Glucanos/genética , Inmunización , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes , Vacunas de Subunidad , Zea mays/genética
9.
J Neurosci ; 38(4): 1000-1014, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29246926

RESUMEN

Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-ß1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies.SIGNIFICANCE STATEMENT We show that a novel vaccination modality combining an antigen-presenting cell-targeting glucan particle (GP) vaccine delivery system with encapsulated antigen (α-synuclein) + rapamycin (RAP) induced both strong anti-α-synuclein antibody titers and regulatory T cells (Tregs). This vaccine, collectively termed GP+RAP/α-syn, is capable of triggering neuroprotective Treg responses in synucleinopathy models, and the combined vaccine is more effective than the humoral or cellular immunization alone. Together, these results support the further development of this multifunctional vaccine approach for the treatment of synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple systems atrophy.


Asunto(s)
Enfermedades Neurodegenerativas/inmunología , Linfocitos T Reguladores/inmunología , Vacunación/métodos , alfa-Sinucleína/inmunología , Animales , Femenino , Glucanos/administración & dosificación , Glucanos/inmunología , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunosupresores/administración & dosificación , Masculino , Ratones , Ratones Transgénicos , Nanopartículas , Sirolimus/administración & dosificación , alfa-Sinucleína/administración & dosificación
10.
Infect Immun ; 86(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30104216

RESUMEN

Developing an effective and safe recombinant vaccine requires microbe-specific antigens combined with an adjuvant/delivery system to strengthen protective immunity. In this study, we designed and expressed a multivalent recombinant Coccidioides polypeptide antigen (rCpa1) that consists of three previously identified antigens (i.e., Ag2/Pra, Cs-Ag, and Pmp1) and five pathogen-derived peptides with high affinity for human major histocompatibility complex class II (MHC-II) molecules. The purified rCpa1 was encapsulated into four types of yeast cell wall particles containing ß-glucan, mannan, and chitin in various proportions or was mixed with an oligonucleotide (ODN) containing two methylated dinucleotide CpG motifs. This multivalent antigen encapsulated into glucan-chitin particles (GCP-rCpa1) showed significantly greater reduction of fungal burden for human HLA-DR4 transgenic mice than the other adjuvant-rCpa1 formulations tested. Among the adjuvants tested, both GCPs and ß-glucan particles (GPs) were capable of stimulating a mixed Th1 and Th17 response. Mice vaccinated with GCP-rCpa1 showed higher levels of interleukin 17 (IL-17) production in T-cell recall assays and earlier lung infiltration by activated Th1 and Th17 cells than GP-rCpa1-vaccinated mice. Both C57BL/6 and HLA-DR4 transgenic mice that were vaccinated with the GCP-rCpa1 vaccine showed higher survival rates than mice that received GCPs alone. Concurrently, the GCP-rCpa1 vaccine stimulated greater infiltration of the injection sites by macrophages, which engulf and process the vaccine for antigen presentation, than the GP-rCpa1 vaccine. This is the first attempt to systematically characterize the presentation of a multivalent coccidioidomycosis vaccine encapsulated with selected adjuvants that enhance the protective cellular immune response to infection.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Quitina/administración & dosificación , Coccidioides/inmunología , Coccidioidomicosis/prevención & control , Glucanos/administración & dosificación , Vacunas Antiprotozoos/inmunología , Células Th17/inmunología , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Antígeno HLA-DR4/genética , Antígeno HLA-DR4/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Nanopartículas/administración & dosificación , Oligodesoxirribonucleótidos/administración & dosificación , Unión Proteica , Vacunas Antiprotozoos/administración & dosificación , Vacunas Antiprotozoos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Análisis de Supervivencia , Células TH1/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
11.
Cancer Immunol Immunother ; 67(11): 1731-1742, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30167860

RESUMEN

ß-Glucan is a naturally occurring glucose polysaccharide with immunostimulatory activity in both infection and malignancy. ß-Glucan's antitumor effects have been attributed to the enhancement of complement receptor 3-dependent cellular cytotoxicity, as well as modulation of suppressive and stimulatory myeloid subsets, which in turn enhances antitumor T cell immunity. In the present study, we demonstrate antitumor efficacy of yeast-derived ß-glucan particles (YGP) in a model of metastatic-like melanoma in the lung, through a mechanism that is independent of previously reported ß-glucan-mediated antitumor pathways. Notably, efficacy is independent of adaptive immunity, but requires inflammatory monocytes. YGP-activated monocytes mediated direct cytotoxicity against tumor cells in vitro, and systemic YGP treatment upregulated inflammatory mediators, including TNFα, M-CSF, and CCL2, in the lungs. Collectively, these studies identify a novel role for inflammatory monocytes in ß-glucan-mediated antitumor efficacy, and expand the understanding of how this immunomodulator can be used to generate beneficial immune responses against metastatic disease.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Mediadores de Inflamación/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Monocitos/inmunología , Receptores CCR2/fisiología , beta-Glucanos/farmacología , Inmunidad Adaptativa/inmunología , Adyuvantes Inmunológicos , Animales , Mediadores de Inflamación/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Linfocitos T/inmunología , Células Tumorales Cultivadas
12.
J Immunol ; 192(12): 5943-51, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24829412

RESUMEN

Chitosan, the deacetylated derivative of chitin, can be found in the cell wall of some fungi and is used in translational applications. We have shown that highly purified preparations of chitosan, but not chitin, activate the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in primed mouse bone marrow-derived macrophages (BMMΦ), inducing a robust IL-1ß response. In this article, we further define specific cell types that are activated and delineate mechanisms of activation. BMMΦ differentiated to promote a classically activated (M1) phenotype released more IL-1ß in response to chitosan than intermediate or alternatively activated macrophages (M2). Chitosan, but not chitin, induced a robust IL-1ß response in mouse dendritic cells, peritoneal macrophages, and human PBMCs. Three mechanisms for NLRP3 inflammasome activation may contribute: K(+) efflux, reactive oxygen species, and lysosomal destabilization. The contributions of these mechanisms were tested using a K(+) efflux inhibitor, high extracellular potassium, a mitochondrial reactive oxygen species inhibitor, lysosomal acidification inhibitors, and a cathepsin B inhibitor. These studies revealed that each of these pathways participated in optimal NLRP3 inflammasome activation by chitosan. Finally, neither chitosan nor chitin stimulated significant release from unprimed BMMΦ of any of 22 cytokines and chemokines assayed. This study has the following conclusions: 1) chitosan, but not chitin, stimulates IL-1ß release from multiple murine and human cell types; 2) multiple nonredundant mechanisms appear to participate in inflammasome activation by chitosan; and 3) chitin and chitosan are relatively weak stimulators of inflammatory mediators from unprimed BMMΦ. These data have implications for understanding the nature of the immune response to microbes and biomaterials that contain chitin and chitosan.


Asunto(s)
Células de la Médula Ósea/inmunología , Quitosano/farmacología , Hemostáticos/farmacología , Macrófagos/inmunología , Animales , Células de la Médula Ósea/citología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Macrófagos/citología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno/inmunología
13.
Brain ; 137(Pt 3): 819-33, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24459107

RESUMEN

Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system contributes to Huntington's disease pathogenesis and has been targeted successfully to modulate disease progression, but mechanistic understanding relating this to mutant huntingtin expression in immune cells has been lacking. Here we demonstrate that human Huntington's disease myeloid cells produce excessive inflammatory cytokines as a result of the cell-intrinsic effects of mutant huntingtin expression. A direct effect of mutant huntingtin on the NFκB pathway, whereby it interacts with IKKγ, leads to increased degradation of IκB and subsequent nuclear translocation of RelA. Transcriptional alterations in intracellular immune signalling pathways are also observed. Using a novel method of small interfering RNA delivery to lower huntingtin expression, we show reversal of disease-associated alterations in cellular function-the first time this has been demonstrated in primary human cells. Glucan-encapsulated small interfering RNA particles were used to lower huntingtin levels in human Huntington's disease monocytes/macrophages, resulting in a reversal of huntingtin-induced elevated cytokine production and transcriptional changes. These findings improve our understanding of the role of innate immunity in neurodegeneration, introduce glucan-encapsulated small interfering RNA particles as tool for studying cellular pathogenesis ex vivo in human cells and raise the prospect of immune cell-directed HTT-lowering as a therapeutic in Huntington's disease.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Células Mieloides/patología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/fisiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Transducción de Señal/genética , Regulación de la Expresión Génica/inmunología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Inmunidad Innata/genética , Células Mieloides/inmunología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , ARN Interferente Pequeño/uso terapéutico , Transducción de Señal/inmunología , Células U937
14.
Nature ; 458(7242): 1180-4, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19407801

RESUMEN

Gene silencing by double-stranded RNA, denoted RNA interference, represents a new paradigm for rational drug design. However, the transformative therapeutic potential of short interfering RNA (siRNA) has been stymied by a key obstacle-safe delivery to specified target cells in vivo. Macrophages are particularly attractive targets for RNA interference therapy because they promote pathogenic inflammatory responses in diseases such as rheumatoid arthritis, atherosclerosis, inflammatory bowel disease and diabetes. Here we report the engineering of beta1,3-D-glucan-encapsulated siRNA particles (GeRPs) as efficient oral delivery vehicles that potently silence genes in mouse macrophages in vitro and in vivo. Oral gavage of mice with GeRPs containing as little as 20 microg kg(-1) siRNA directed against tumour necrosis factor alpha (Tnf-alpha) depleted its messenger RNA in macrophages recovered from the peritoneum, spleen, liver and lung, and lowered serum Tnf-alpha levels. Screening with GeRPs for inflammation genes revealed that the mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) is a previously unknown mediator of cytokine expression. Importantly, silencing Map4k4 in macrophages in vivo protected mice from lipopolysaccharide-induced lethality by inhibiting Tnf-alpha and interleukin-1beta production. This technology defines a new strategy for oral delivery of siRNA to attenuate inflammatory responses in human disease.


Asunto(s)
Sistemas de Liberación de Medicamentos , Silenciador del Gen , Inflamación/prevención & control , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/administración & dosificación , Administración Oral , Animales , Activación Enzimática/efectos de los fármacos , Glucanos/metabolismo , Inflamación/genética , Interleucina-1beta/biosíntesis , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Especificidad de Órganos , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especificidad por Sustrato , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Quinasa de Factor Nuclear kappa B
15.
J Immunol ; 189(1): 312-7, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22649195

RESUMEN

Glucan particles (GPs) are Saccharomyces cerevisiae cell walls chemically extracted so they are composed primarily of particulate ß-1,3-D-glucans. GPs are recognized by Dectin-1 and are potent complement activators. Mice immunized with Ag-loaded GPs develop robust Ab and CD4(+) T cell responses. In this study, we examined the relative contributions of Dectin-1 and complement to GP phagocytosis and Ag-specific responses to immunization with OVA encapsulated in GPs. The in vitro phagocytosis of GPs by bone marrow-derived dendritic cells was facilitated by heat-labile serum component(s) independently of Dectin-1. This enhanced uptake was not seen with serum from complement component 3 knockout (C3(-/-)) mice and was also inhibited by blocking Abs directed against complement receptor 3. After i.p. injection, percent phagocytosis of GPs by peritoneal macrophages was comparable in wild-type and Dectin-1(-/-) mice and was not inhibited by the soluble ß-glucan antagonist laminarin. In contrast, a much lower percentage of peritoneal macrophages from C3(-/-) mice phagocytosed GPs, and this percentage was further reduced in the presence of laminarin. Subcutaneous immunization of wild-type, Dectin-1(-/-), and C3(-/-) mice with GP-OVA resulted in similar Ag-specific IgG(1) and IgG(2c) type Ab and CD4(+) T cell lymphoproliferative responses. Moreover, while CD4(+) Th1 and Th2 responses measured by ELISPOT assay were similar in the three mouse strains, Th17 responses were reduced in C3(-/-) mice. Thus, although Dectin-1 is necessary for optimal phagocytosis of GPs in the absence of complement, complement dominates when both an intact complement system and Dectin-1 are present. In addition, Th-skewing after GP-based immunization was altered in C3(-/-) mice.


Asunto(s)
Complemento C3/fisiología , Lectinas Tipo C/fisiología , beta-Glucanos/inmunología , Animales , Anticuerpos Bloqueadores/fisiología , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Complemento C3/antagonistas & inhibidores , Complemento C3/deficiencia , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Lectinas Tipo C/administración & dosificación , Lectinas Tipo C/metabolismo , Ligandos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/administración & dosificación , Ovalbúmina/inmunología , Fagocitosis/inmunología , beta-Glucanos/administración & dosificación , beta-Glucanos/metabolismo
16.
PLoS One ; 19(5): e0294998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713688

RESUMEN

Tularemia is a zoonotic disease caused by the facultative intracellular gram-negative bacterium Francisella tularensis. F. tularensis has a very low infection dose by the aerosol route which can result in an acute, and potentially lethal, infection in humans. Consequently, it is classified as a Category A bioterrorism agent by the US Centers for Disease Control (CDC) and is a pathogen of concern for the International Biodefence community. There are currently no licenced tularemia vaccines. In this study we report on the continued assessment of a tularemia subunit vaccine utilising ß-glucan particles (GPs) as a vaccine delivery platform for immunogenic F. tularensis antigens. Using a Fischer 344 rat infection model, we demonstrate that a GP based vaccine comprising the F. tularensis lipopolysaccharide antigen together with the protein antigen FTT0814 provided partial protection of F344 rats against an aerosol challenge with a high virulence strain of F. tularensis, SCHU S4. Inclusion of imiquimod as an adjuvant failed to enhance protective efficacy. Moreover, the level of protection afforded was dependant on the challenge dose. Immunological characterisation of this vaccine demonstrated that it induced strong antibody immunoglobulin responses to both polysaccharide and protein antigens. Furthermore, we demonstrate that the FTT0814 component of the GP vaccine primed CD4+ and CD8+ T-cells from immunised F344 rats to express interferon-γ, and CD4+ cells to express interleukin-17, in an antigen specific manner. These data demonstrate the development potential of this tularemia subunit vaccine and builds on a body of work highlighting GPs as a promising vaccine platform for difficult to treat pathogens including those of concern to the bio-defence community.


Asunto(s)
Vacunas Bacterianas , Modelos Animales de Enfermedad , Francisella tularensis , Ratas Endogámicas F344 , Tularemia , Vacunas de Subunidad , Animales , Tularemia/prevención & control , Tularemia/inmunología , Ratas , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Francisella tularensis/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Glucanos/inmunología , Glucanos/farmacología , Linfocitos T/inmunología , Femenino , Antígenos Bacterianos/inmunología
17.
Vaccines (Basel) ; 12(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38250880

RESUMEN

Coccidioidomycosis is caused by Coccidioides posadasii (Cp) and Coccidioides immitis (Ci), which have a 4-5% difference in their genomic sequences. There is an urgent need to develop a human vaccine against both species. A previously created recombinant antigen (rCpa1) that contains multiple peptides derived from Cp isolate C735 is protective against the autologous isolate. The focus of this study is to evaluate cross-protective efficacy and immune correlates by the rCpa1-based vaccine against both species of Coccidioides. DNA sequence analyses of the homologous genes for the rCpa1 antigen were conducted for 39 and 17 clinical isolates of Cp and Ci, respectively. Protective efficacy and vaccine-induced immunity were evaluated for both C57BL/6 and human HLA-DR4 transgenic mice against five highly virulent isolates of Cp and Ci. There are total of seven amino acid substitutions in the rCpa1 antigen between Cp and Ci. Both C57BL/6 and HLA-DR4 mice that were vaccinated with an rCpa1 vaccine had a significant reduction of fungal burden and increased numbers of IFN-γ- and IL-17-producing CD4+ T cells in the first 2 weeks post challenge. These data suggest that rCpa1 has cross-protection activity against Cp and Ci pulmonary infection through activation of early Th1 and Th17 responses.

18.
Pharmaceutics ; 15(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37242632

RESUMEN

Glucan particles (GPs) are hollow, porous 3-5 µm microspheres derived from the cell walls of Baker's yeast (Saccharomyces cerevisiae). Their 1,3-ß-glucan outer shell allows for receptor-mediated uptake by macrophages and other phagocytic innate immune cells expressing ß-glucan receptors. GPs have been used for the targeted delivery of a wide range of payloads, including vaccines and nanoparticles, encapsulated inside the hollow cavity of GPs. In this paper, we describe the methods to prepare GP-encapsulated nickel nanoparticles (GP-Ni) for the binding of histidine (His)-tagged proteins. His-tagged Cda2 cryptococcal antigens were used as payloads to demonstrate the efficacy of this new GP vaccine encapsulation approach. The GP-Ni-Cda2 vaccine was shown to be comparable to our previous approach utilizing mouse serum albumin (MSA) and yeast RNA trapping of Cda2 in GPs in a mouse infection model. This novel GP-Ni approach allows for the one-step binding of His-tagged vaccine antigens and encapsulation in an effective delivery vehicle to target vaccines to antigen-presenting cells (APCs), antigen discovery, and vaccine development.

19.
J Control Release ; 357: 175-184, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933700

RESUMEN

Glucan particles (GPs) are hollow, porous microspheres derived from Saccharomyces cerevisiae (Baker's yeast). The hollow cavity of GPs allows for efficient encapsulation of different types of macromolecules and small molecules. The ß-1,3-D-glucan outer shell provides for receptor-mediated uptake by phagocytic cells expressing ß-glucan receptors and uptake of particles containing encapsulated proteins elicit protective innate and acquired immune responses against a wide range of pathogens. A limitation of the previously reported GP protein delivery technology is limited protection from thermal degradation. Here we present results of an efficient protein encapsulation approach using tetraethylorthosilicate (TEOS) to lock protein payloads in a thermostable silica cage formed in situ inside the hollow cavity of GPs. The methods for this improved, efficient GP protein ensilication approach were developed and optimized using bovine serum albumin (BSA) as model protein. The improved method involved controlling the rate of TEOS polymerization, such that the soluble TEOS-protein solution was able to be absorbed into the GP hollow cavity before the protein-silica cage polymerized and becomes too large to transverse across the GP wall. This improved method provided for >90% GP encapsulation efficiency, increased thermal stabilization of GP ensilicated BSA, and was shown to be applicable for encapsulation of proteins of different molecular weights and isoelectric points. To demonstrate the retention of bioactivity of this improved method of protein delivery, we evaluated the in vivo immunogenicity of two GP ensilicated vaccine formulations using (1) ovalbumin as a model antigen and (2) a protective antigenic protein from the fungal pathogen Cryptococcus neoformans. The results show that the GP ensilicated vaccines have a similar high immunogenicity as our current GP protein/hydrocolloid vaccines, as evidenced by robust antigen-specific IgG responses to the GP ensilicated OVA vaccine. Further, a GP ensilicated C. neoformans Cda2 vaccine protected vaccinated mice from a lethal pulmonary infection of C. neoformans.


Asunto(s)
Glucanos , Vacunas , Ratones , Animales , Dióxido de Silicio , Antígenos , Saccharomyces cerevisiae
20.
NPJ Vaccines ; 8(1): 6, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732332

RESUMEN

Vaccination with glucan particles (GP) containing the Cryptococcus neoformans chitin deacetylases Cda1 and Cda2 protect mice against experimental cryptococcosis. Here, immunological correlates of vaccine-mediated protection were explored. Studies comparing knockout and wild-type mice demonstrated CD4+ T cells are crucial, while B cells and CD8+ T cells are dispensable. Protection was abolished following CD4+ T cell depletion during either vaccination or infection but was retained if CD4+ T cells were only partially depleted. Vaccination elicited systemic and durable antigen-specific immune responses in peripheral blood mononuclear cells (PBMCs), spleens, and lungs. Following vaccination and fungal challenge, robust T-helper (Th) 1 and Th17 responses were observed in the lungs. Protection was abrogated in mice congenitally deficient in interferon (IFN) γ, IFNγ receptor, interleukin (IL)-1ß, IL-6, or IL-23. Thus, CD4+ T cells and specific proinflammatory cytokines are required for GP-vaccine-mediated protection. Importantly, retention of protection in the setting of partial CD4+ T depletion suggests a pathway for vaccinating at-risk immunocompromised individuals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA