Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
PLoS Comput Biol ; 20(2): e1011779, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422117

RESUMEN

Recent studies have established that the circadian clock influences onset, progression and therapeutic outcomes in a number of diseases including cancer and heart diseases. Therefore, there is a need for tools to measure the functional state of the molecular circadian clock and its downstream targets in patients. Moreover, the clock is a multi-dimensional stochastic oscillator and there are few tools for analysing it as a noisy multigene dynamical system. In this paper we consider the methodology behind TimeTeller, a machine learning tool that analyses the clock as a noisy multigene dynamical system and aims to estimate circadian clock function from a single transcriptome by modelling the multi-dimensional state of the clock. We demonstrate its potential for clock systems assessment by applying it to mouse, baboon and human microarray and RNA-seq data and show how to visualise and quantify the global structure of the clock, quantitatively stratify individual transcriptomic samples by clock dysfunction and globally compare clocks across individuals, conditions and tissues thus highlighting its potential relevance for advancing circadian medicine.


Asunto(s)
Relojes Circadianos , Humanos , Ratones , Animales , Relojes Circadianos/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Ritmo Circadiano/genética
2.
Chem Rev ; 123(10): 6545-6611, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37184577

RESUMEN

The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.

3.
J Am Chem Soc ; 146(17): 12000-12010, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38639553

RESUMEN

The development of redox-conductive metal-organic frameworks (MOFs) and the fundamental understanding of charge propagation through these materials are central to their applications in energy storage, electronics, and catalysis. To answer some unresolved questions about diffusional electron hopping transport and redox conductivity, mixed-linker MOFs were constructed from two statistically distributed redox-active linkers, pyromellitic diimide bis-pyrazolate (PMDI) and naphthalene diimide bis-pyrazolate (NDI), and grown as crystalline thin films on conductive fluorine-doped tin oxide (FTO). Owing to the distinct redox properties of the linkers, four well-separated and reversible redox events are resolved by cyclic voltammetry, and the mixed-linker MOFs can exist in five discrete redox states. Each state is characterized by a unique spectroscopic signature, and the interconversions between the states can be followed spectroscopically under operando conditions. With the help of pulsed step-potential spectrochronoamperometry, two modes of electron propagation through the mixed-linker MOF are identified: diffusional electron hopping transport between linkers of the same type and a second channel that arises from thermodynamically driven electron transfers between linkers of different types. Corresponding to the four redox events of the mixed-linker MOFs, four distinct bell-shaped redox conductivity profiles are observed at a steady state. The magnitude of the maximum redox conductivity is evidenced to be dependent on the distance between redox hopping sites, analogous to the situation for apparent electron diffusion coefficients, Deapp, that are obtained in transient experiments. The design of mixed-linker redox-conductive MOFs and detailed studies of their charge transport properties present new opportunities for future applications of MOFs, in particular, within electrocatalysis.

4.
Crit Care ; 28(1): 105, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566212

RESUMEN

BACKGROUND: Observational data suggest that the subset of patients with heart failure related CS (HF-CS) now predominate critical care admissions for CS. There are no dedicated HF-CS randomised control trials completed to date which reliably inform clinical practice or clinical guidelines. We sought to identify aspects of HF-CS care where both consensus and uncertainty may exist to guide clinical practice and future clinical trial design, with a specific focus on HF-CS due to acute decompensated chronic HF. METHODS: A 16-person multi-disciplinary panel comprising of international experts was assembled. A modified RAND/University of California, Los Angeles, appropriateness methodology was used. A survey comprising of 34 statements was completed. Participants anonymously rated the appropriateness of each statement on a scale of 1 to 9 (1-3 as inappropriate, 4-6 as uncertain and as 7-9 appropriate). RESULTS: Of the 34 statements, 20 were rated as appropriate and 14 were rated as inappropriate. Uncertainty existed across all three domains: the initial assessment and management of HF-CS; escalation to temporary Mechanical Circulatory Support (tMCS); and weaning from tMCS in HF-CS. Significant disagreement between experts (deemed present when the disagreement index exceeded 1) was only identified when deliberating the utility of thoracic ultrasound in the immediate management of HF-CS. CONCLUSION: This study has highlighted several areas of practice where large-scale prospective registries and clinical trials in the HF-CS population are urgently needed to reliably inform clinical practice and the synthesis of future societal HF-CS guidelines.


Asunto(s)
Insuficiencia Cardíaca , Choque Cardiogénico , Humanos , Consenso , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/terapia , Hospitalización , Estudios Prospectivos , Choque Cardiogénico/tratamiento farmacológico
5.
J Cardiothorac Vasc Anesth ; 38(5): 1150-1160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38378323

RESUMEN

OBJECTIVE: Acute kidney injury (AKI) requiring renal-replacement therapy (RRT) after heart transplantation (OHT) is common and impairs outcomes. This study aimed to identify independent donor and recipient risk factors associated with RRT after OHT. DESIGN: A retrospective data analysis. SETTING: Data were collected from clinical routines in a maximum-care university hospital. PARTICIPANTS: Patients who underwent OHT. INTERVENTIONS: The authors retrospectively analyzed data from 264 patients who underwent OHT between 2012 and 2021; 189 patients were eligible and included in the final analysis. MEASUREMENTS AND MAIN RESULTS: The mean age was 48.0 ± 12.3 years, and 71.4% of patients were male. Ninety (47.6%) patients were on long-term mechanical circulatory support (lt-MCS). Posttransplant AKI with RRT occurred in 123 (65.1%) patients. In a multivariate analysis, preoperative body mass index >25 kg/m² (odds ratio [OR] 4.74, p < 0.001), elevated preoperative creatinine levels (OR for each mg/dL increase 3.44, p = 0.004), administration of red blood cell units during transplantation procedure (OR 2.31, p = 0.041) and ischemia time (OR for each hour increase 1.77, p = 0.004) were associated with a higher incidence of RRT. The use of renin-angiotensin-aldosterone system blockers before transplantation was associated with a reduced risk of RRT (OR 0.36, p = 0.013). The risk of mortality was 6.9-fold higher in patients who required RRT (hazard ratio 6.9, 95% CI: 2.1-22.6 p = 0.001). Previous lt-MCS, as well as donor parameters, were not associated with RRT after OHT. CONCLUSIONS: The implementation of guideline-directed medical therapy, weight reduction, minimizing ischemia time (ie, organ perfusion systems, workflow optimization), and comprehensive patient blood management potentially influences renal function and outcomes after OHT.


Asunto(s)
Lesión Renal Aguda , Trasplante de Corazón , Humanos , Masculino , Adulto , Persona de Mediana Edad , Femenino , Estudios Retrospectivos , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/terapia , Factores de Riesgo , Terapia de Reemplazo Renal , Trasplante de Corazón/efectos adversos , Isquemia/etiología
6.
BMC Med Educ ; 24(1): 360, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566149

RESUMEN

BACKGROUND: Point-of-care ultrasound (POCUS) is a critical diagnostic tool in various medical settings, yet its instruction in medical education is inconsistent. The Rapid Ultrasound for Shock and Hypotension (RUSH) protocol is a comprehensive diagnostic tool, but its complexity poses challenges for teaching and learning. This study evaluates the effectiveness of a single-day training in RUSH for medical students by assessing their performance in clinical scenarios. METHODS: In this prospective single-center observational proof-of-concept study, 16 medical students from Saarland University Medical Center underwent a single-day training in RUSH, followed by evaluations in clinical settings and on a high-fidelity simulator. Performance was assessed using a standardized scoring tool and time to complete the RUSH exam. Knowledge gain was measured with pre- and post-training written exams, and diagnostic performance was evaluated with an objective structured clinical examination (OSCE). RESULTS: Students demonstrated high performance in RUSH exam views across patients (median performance: 85-87%) and improved scanning times, although not statistically significant. They performed better on simulators than on live patients. Written exam scores significantly improved post-training, suggesting a gain in theoretical knowledge. However, more than a third of students could not complete the RUSH exam within five minutes on live patients. CONCLUSIONS: Single-day RUSH training improved medical students' theoretical knowledge and simulator performance but translating these skills to clinical settings proved challenging. The findings suggest that while short-term training can be beneficial, it may not suffice for clinical proficiency. This study underscores the need for structured and possibly longitudinal training programs to ensure skill retention and clinical applicability.


Asunto(s)
Hipotensión , Estudiantes de Medicina , Humanos , Estudios Prospectivos , Competencia Clínica , Aprendizaje
7.
J Am Chem Soc ; 145(21): 11472-11476, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37127024

RESUMEN

Lateral intermolecular charge transfer between photosensitizers on metal oxide substrates is important for the understanding on the overall working principles of dye-sensitized systems. Such studies usually concentrate on either hole or electron transfer separately and are conducted in solvents with a high dielectric constant (εs) that are known, however, to show a drastic decrease of the local dielectric constant close to the metal oxide surface. In the present study, both hole and electron hopping between organic donor-acceptor photosensitizers was experimentally investigated on PB6 dye-sensitized mesoporous ZrO2 films. The donor (close to the surface) and acceptor (away from surface) subunit of the PB6 dye were observed to be involved in hole and electron hopping, respectively. Hole and electron transfer kinetics were found to differ remarkably in high-εs solvents, but similar in solvents with εs < 12. This finding indicates that low-εs solvents maintain similar local dielectric constant values close to, and further away from, the semiconductor surface, which is different from the previously observed behavior of high dielectric constant solvents at a metal oxide interface.

8.
Plant Cell ; 32(9): 2742-2762, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32699170

RESUMEN

While root diseases are among the most devastating stresses in global crop production, our understanding of root immunity is still limited relative to our knowledge of immune responses in leaves. Considering that root performance is based on the concerted functions of its different cell types, we undertook a cell type-specific transcriptome analysis to identify gene networks activated in epidermis, cortex, and pericycle cells of Arabidopsis (Arabidopsis thaliana) roots challenged with two immunity elicitors, the bacterial flagellin-derived flg22 and the endogenous Pep1 peptide. Our analyses revealed distinct immunity gene networks in each cell type. To further substantiate our understanding of regulatory patterns underlying these cell type-specific immunity networks, we developed a tool to analyze paired transcription factor binding motifs in the promoters of cell type-specific genes. Our study points toward a connection between cell identity and cell type-specific immunity networks that might guide cell types in launching immune response according to the functional capabilities of each cell type.


Asunto(s)
Arabidopsis/citología , Arabidopsis/inmunología , Redes Reguladoras de Genes/inmunología , Raíces de Plantas/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis , Basidiomycota , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Células Vegetales/inmunología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Raíces de Plantas/citología , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transducción de Señal , Transactivadores
9.
Inorg Chem ; 62(45): 18391-18398, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37853683

RESUMEN

The light-driven activation of halophosphines R2PX (R = alkyl- or aryl, X = Cl, Br) by an IrIII-based photocatalyst is described. It is shown that initially formed secondary phosphines R2PH react readily with the remaining R2PX in a parent-child reaction to form diphosphines R2P-PR2. Aryl-containing diphosphines can be further reduced to secondary phosphines RAr2PH under identical photoredox conditions. Dihalophosphines RPX2 are also activated by the photoredox protocol, giving rise to unusual 3-, 4-, and 5-membered cyclophosphines. Transient absorption studies show that the excited state of the Ir photocatalyst is reductively quenched by the DIPEA (N,N-di-iso-propylethylamine) electron donor. Electron transfer to R2PX is however unexpectedly slow and cannot compete with recombination with the oxidized donor DIPEA•+. As DIPEA is not a perfectly reversible donor, a small proportion of the total IrII population escapes recombination, providing the reductant for the observed transformations.

10.
Eur J Anaesthesiol ; 40(6): 418-424, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37052046

RESUMEN

BACKGROUND: Increasing evidence from randomised controlled trials supports the implementation of a six-measure care bundle proposed by the Kidney Disease Improving Global Outcomes (KDIGO) guidelines in patients at high risk for acute kidney injury (AKI) to reduce its incidence after cardiac surgery. OBJECTIVE: To assess compliance with the KDIGO bundle in clinical practice. DESIGN: Prospective observational multinational study. SETTING: Six international tertiary care centres, from February 2021 to November 2021. PATIENTS: Five hundred and thirty-seven consecutive patients undergoing cardiac surgery during a 1-month observational period. INTERVENTIONS: All patients were assessed for the postoperative implementation of the following measures: avoidance of nephrotoxic medication and radiocontrast agents whenever possible, strict glycaemic control, close monitoring of renal function, optimisation of haemodynamic and volume status and functional monitoring of haemodynamic status. MAIN OUTCOME MEASURES: The primary endpoint was the proportion of patients receiving fully compliant care. Secondary outcomes were occurrence of AKI and major adverse kidney event rate at day 30. RESULTS: The full care bundle was applied to 0.4% of patients. There was avoidance of nephrotoxic drugs in 15.6%, radiocontrast agents in 95.3% and hyperglycaemia in 39.6%. Close monitoring of urine output and serum creatinine was achieved in 6.3%, 57.4% underwent optimisation of volume and haemodynamic status, and 43.9% received functional haemodynamic monitoring. 27.2% developed AKI within 72 h after surgery. The average number of implemented measures was 2.6 ±â€Š1.0 and did not differ between AKI or non-AKI patients ( P  = 0.854). CONCLUSION: Adherence with the KDIGO bundle was very low in cardiac surgery patients. Initiatives to improve guideline compliance might provide a strategy to mitigate the burden of AKI. TRIAL REGISTRATION: www.drks.de DRKS00024204.


Asunto(s)
Lesión Renal Aguda , Procedimientos Quirúrgicos Cardíacos , Humanos , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Medios de Contraste , Riñón/fisiología , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios Prospectivos
11.
Artículo en Alemán | MEDLINE | ID: mdl-37192639

RESUMEN

The use of temporary mechanical circulatory support (tMCS) devices and in particular the increasing use of the Impella device family has gained significant interest over the last two decades. Nowadays, its use plays a well-established key role in both the treatment of cardiogenic shock, and as a preventive and protective therapeutic option during high-risk procedures in both cardiac surgery and cardiology, such as complex percutaneous interventions (protected PCI). Thus, it is not surprising that the Impella device is more and more present in the perioperative setting and especially in patients on intensive care units. Despite the numerous advantages such as cardiac resting and hemodynamic stabilization, potential adverse events exist, which may lead to severe, but preventable complications, so that adequate education, early recognition of such events and a subsequent adequate management are crucial in patients with tMCS. This article provides an overview especially for anesthesiologists and intensivists focusing on technical basics, indications and contraindications for its use with special focus on the intra- and postoperative management. Furthermore, troubleshooting for most common complications for patients on Impella support is provided.


Asunto(s)
Anestesia , Procedimientos Quirúrgicos Cardíacos , Corazón Auxiliar , Intervención Coronaria Percutánea , Humanos , Intervención Coronaria Percutánea/métodos , Choque Cardiogénico/etiología , Choque Cardiogénico/cirugía , Cuidados Críticos , Corazón Auxiliar/efectos adversos , Resultado del Tratamiento , Estudios Retrospectivos
12.
Angew Chem Int Ed Engl ; 62(17): e202218728, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800485

RESUMEN

Molecular electrocatalysts for CO2 -to-CO conversion often operate at large overpotentials, due to the large barrier for C-O bond cleavage. Illustrated with ruthenium polypyridyl catalysts, we herein propose a mechanistic route that involves one metal center that acts as both Lewis base and Lewis acid at different stages of the catalytic cycle, by density functional theory in corroboration with experimental FTIR. The nucleophilic character of the Ru center manifests itself in the initial attack on CO2 to form [Ru-CO2 ]0 , while its electrophilic character allows for the formation of a 5-membered metallacyclic intermediate, [Ru-CO2 CO2 ]0,c , by addition of a second CO2 molecule and intramolecular cyclization. The calculated activation barrier for C-O bond cleavage via the metallacycle is decreased by 34.9 kcal mol-1 as compared to the non-cyclic adduct in the two electron reduced state of complex 1. Such metallacyclic intermediates in electrocatalytic CO2 reduction offer a new design feature that can be implemented consciously in future catalyst designs.

13.
J Am Chem Soc ; 144(13): 5910-5920, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35325542

RESUMEN

Electron transport through metal-organic frameworks by a hopping mechanism between discrete redox active sites is coupled to diffusion-migration of charge-balancing counter cations. Experimentally determined apparent diffusion coefficients, Deapp, that characterize this form of charge transport thus contain contributions from both processes. While this is well established for MOFs, microscopic descriptions of this process are largely lacking. Herein, we systematically lay out different scenarios for cation-coupled electron transfer processes that are at the heart of charge diffusion through MOFs. Through systematic variations of solvents and electrolyte cations, it is shown that the Deapp for charge migration through a PIZOF-type MOF, Zr(dcphOH-NDI) that is composed of redox-active naphthalenediimide (NDI) linkers, spans over 2 orders of magnitude. More importantly, however, the microscopic mechanisms for cation-coupled electron propagation are contingent on differing factors depending on the size of the cation and its propensity to engage in ion pairs with reduced linkers, either non-specifically or in defined structural arrangements. Based on computations and in agreement with experimental results, we show that ion pairing generally has an adverse effect on cation transport, thereby slowing down charge transport. In Zr(dcphOH-NDI), however, specific cation-linker interactions can open pathways for concerted cation-coupled electron transfer processes that can outcompete limitations from reduced cation flux.


Asunto(s)
Estructuras Metalorgánicas , Cationes , Transporte de Electrón , Electrones , Estructuras Metalorgánicas/química , Oxidación-Reducción
14.
Hum Reprod ; 37(4): 747-761, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35092277

RESUMEN

STUDY QUESTION: Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation testing be improved by measuring the expression of a small number of genes and a continuous, non-categorical modelling approach? SUMMARY ANSWER: Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3 and SLC15A2) is sufficient to obtain substantially more accurate timing estimates and to assess the reliability of timing estimates for each sample. WHAT IS KNOWN ALREADY: Commercially available endometrial timing approaches based on gene expression require large gene sets and use a categorical approach that classifies samples as pre-receptive, receptive or post-receptive. STUDY DESIGN, SIZE, DURATION: Gene expression was measured by RTq-PCR in different sample sets, comprising a total of 664 endometrial biopsies obtained 4-12 days after a self-reported positive home ovulation test. A further 36 endometrial samples were profiled by RTq-PCR as well as RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS: A computational procedure, named 'EndoTime', was established that models the temporal profile of each gene and estimates the timing of each sample. Iterating these steps, temporal profiles are gradually refined as sample timings are being updated, and confidence in timing estimates is increased. After convergence, the method reports updated timing estimates for each sample while preserving the overall distribution of time points. MAIN RESULTS AND THE ROLE OF CHANCE: The Wilcoxon rank-sum test was used to confirm that ordering samples by EndoTime estimates yields sharper temporal expression profiles for held-out genes (not used when determining sample timings) than ordering the same expression values by patient-reported times (GPX3: P < 0.005; CXCL14: P < 2.7e-6; DPP4: P < 3.7e-13). Pearson correlation between EndoTime estimates for the same sample set but based on RTq-PCR or RNA-sequencing data showed a high degree of congruency between the two (P = 8.6e-10, R2 = 0.687). Estimated timings did not differ significantly between control subjects and patients with recurrent pregnancy loss or recurrent implantation failure (P > 0.05). LARGE SCALE DATA: The RTq-PCR data files are available via the GitHub repository for the EndoTime software at https://github.com/AE-Mitchell/EndoTime, as is the code used for pre-processing of RTq-PCR data. The RNA-sequencing data are available on GEO (accession GSE180485). LIMITATIONS, REASONS FOR CAUTION: Timing estimates are informed by glandular gene expression and will only represent the temporal state of other endometrial cell types if in synchrony with the epithelium. Methods that estimate the day of ovulation are still required as these data are essential inputs in our method. Our approach, in its current iteration, performs batch correction such that larger sample batches impart greater accuracy to timing estimations. In theory, our method requires endometrial samples obtained at different days in the luteal phase. In practice, however, this is not a concern as timings based on urinary ovulation testing are associated with a sufficient level of noise to ensure that a variety of time points will be sampled. WIDER IMPLICATIONS OF THE FINDINGS: Our method is the first to assay the temporal state of luteal-phase endometrial samples on a continuous domain. It is freely available with fully shared data and open-source software. EndoTime enables accurate temporal profiling of any gene in luteal endometrial samples for a wide range of research applications and, potentially, clinical use. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by a Wellcome Trust Investigator Award (Grant/Award Number: 212233/Z/18/Z) and the Tommy's National Miscarriage Research Centre. None of the authors have any competing interests. J.L. was funded by the Biotechnology and Biological Sciences Research Council (UK) through the Midlands Integrative Biology Training Partnership (MIBTP, BB/M01116X/1).


Asunto(s)
Aborto Habitual , Endometrio , Aborto Habitual/metabolismo , Endometrio/metabolismo , Femenino , Humanos , Fase Luteínica/metabolismo , Embarazo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
15.
J Exp Bot ; 73(7): 2142-2156, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34850882

RESUMEN

Legumes house nitrogen-fixing endosymbiotic rhizobia in specialized polyploid cells within root nodules, which undergo tightly regulated metabolic activity. By carrying out expression analysis of transcripts over time in Medicago truncatula nodules, we found that the circadian clock enables coordinated control of metabolic and regulatory processes linked to nitrogen fixation. This involves the circadian clock-associated transcription factor LATE ELONGATED HYPOCOTYL (LHY), with lhy mutants being affected in nodulation. Rhythmic transcripts in root nodules include a subset of nodule-specific cysteine-rich peptides (NCRs) that have the LHY-bound conserved evening element in their promoters. Until now, studies have suggested that NCRs act to regulate bacteroid differentiation and keep the rhizobial population in check. However, these conclusions came from the study of a few members of this very large gene family that has complex diversified spatio-temporal expression. We suggest that rhythmic expression of NCRs may be important for temporal coordination of bacterial activity with the rhythms of the plant host, in order to ensure optimal symbiosis.


Asunto(s)
Relojes Circadianos , Medicago truncatula , Sinorhizobium meliloti , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/metabolismo , Fijación del Nitrógeno/fisiología , Péptidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
16.
Stem Cells ; 39(8): 1067-1080, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33764639

RESUMEN

Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation. Single-cell transcriptomics demonstrated that hPMC express genes involved in chemotaxis and vascular transmigration. Although distinct from resident EnSC, hPMC also express genes encoding pivotal decidual transcription factors and markers, most prominently prolactin. We further show that hPMC are enriched around spiral arterioles, scattered throughout the stroma, and occasionally present in glandular and luminal epithelium. The abundance of hPMC correlated with the in vitro colony-forming unit activity of midluteal endometrium and, conversely, clonogenic cells in culture express a gene signature partially conserved in hPMC. Cross-referencing of single-cell RNA-sequencing data sets indicated that hPMC differentiate into a recently discovered decidual subpopulation in early pregnancy. Finally, we demonstrate that recurrent pregnancy loss is associated with hPMC depletion. Collectively, our findings characterize midluteal hPMC as novel decidual precursors that are likely derived from circulating bone marrow-derived mesenchymal stem/stromal cells and integral to decidual plasticity in pregnancy.


Asunto(s)
Implantación del Embrión , Endometrio , Diferenciación Celular , Decidua , Embrión de Mamíferos , Femenino , Humanos , Embarazo , Células del Estroma
17.
Artif Organs ; 46(5): 908-921, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34904259

RESUMEN

BACKGROUND: Cardiopulmonary bypass (CPB) during left ventricular assist device (LVAD) implantation provides circulatory support and allows for safe inspection of the left ventricle (LV), whereas circulatory support by veno-arterial extracorporeal life support (va-ECLS) or off-pump implantation may reduce postoperative bleeding and inflammatory response. METHODS: Retrospective analysis of 616 consecutive adult patients who received an LVAD via median sternotomy between January 1, 2015 and December 31, 2019. All patients undergoing concomitant intracardiac procedures other than closure of persistent foramen ovale or atrial septal defect and redo surgeries were excluded from the analysis. The remaining patients (n = 222) were divided into two groups and 1:1 propensity score-matched regarding preoperative parameters: patients who underwent LVAD implantation with LV inspection employing CPB (CPB group, n = 62) and without LV inspection on va-ECLS or off-pump (non-CPB group, n = 62). RESULTS: The groups were well balanced with regard to preoperative baseline characteristics (standard difference <0.1). Patients in the CPB group required more blood transfusions (median 2 vs. 0 units, p = 0.031) during surgery and in the first 24 h afterwards. The median intensive care unit stay was longer in the CPB group (18 vs. 11 days, p = 0.021). The CPB group showed an absence of perioperative stroke and a smaller number of events per patient-year for postoperative ischemic stroke (0.02 vs. 0.12, p = 0.003). 30-day survival (87% vs. 87.1%) and 1-year survival (80.3% vs. 74%) were similar in both groups (p = 0.78). CONCLUSION: Visual LV inspection on CPB may reduce the risk of postoperative ischemic stroke. Despite the negative effects of employing CPB in lieu of other intraoperative strategies, survival was similar in both groups.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Corazón Auxiliar , Adulto , Puente Cardiopulmonar , Oxigenación por Membrana Extracorpórea/métodos , Ventrículos Cardíacos , Corazón Auxiliar/efectos adversos , Humanos , Estudios Retrospectivos , Resultado del Tratamiento
18.
J Cardiothorac Vasc Anesth ; 36(2): 444-451, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34130896

RESUMEN

OBJECTIVE: Acute kidney injury (AKI) is a common complication after cardiac surgery (CS). Because a therapeutic regimen remains scarce, the early implementation of preventive strategies is crucial. The authors investigated risk factors and the typical clinical course of CS-associated AKI (CS-AKI) to derive strategies for perioperative clinical routines. DESIGN: Retrospective data analysis. SETTING: The data were collected from clinical routines in a maximum care university hospital. PARTICIPANTS: Patients. INTERVENTIONS: The authors retrospectively analyzed data from 538 patients who underwent CS. MEASUREMENTS AND MAIN RESULTS: The median age of the 466 patients included was 66.6 years; 65.7% were men. AKI occurred in 131 (28.1%) patients, mainly (89.0%) starting postoperatively within 72 hours p. Thirty-one (6.7%) patients showed Kidney Disease Improving Global Outcome AKI stage 3. AKI was significantly more frequent in patients with chronic kidney disease (p < 0.001), emergency admission (p < 0.001), heart failure (p < 0.001), and postoperative complications (p < 0.001). In a multivariate analysis, postoperative CS-AKI risk significantly decreased with each 1 or 10 mL/min preoperative glomerular filtration rate (GFR) (odds ratio, 0.962 and 0.677; 95% confidence interval, 0.947-0.977 and 0.577-0.793; p < 0.001 and p < 0.0001). Only in patients who developed Kidney Disease Improving Global Outcome AKI stage 3, an early postoperative trend to decreased GFR and increased creatinine levels was observed. CONCLUSIONS: Especially in patients with preexisting CKD and signs of CS-AKI occurring on the day of surgery, close monitoring of renal function should be performed for at least 72 hours after CS to detect an onset of AKI early and initiate renal protective strategies. Optimal preoperative fluid management might prevent postoperative AKI.


Asunto(s)
Lesión Renal Aguda , Procedimientos Quirúrgicos Cardíacos , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología , Anciano , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Tasa de Filtración Glomerular , Humanos , Masculino , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Estudios Retrospectivos , Factores de Riesgo
19.
Nano Lett ; 21(13): 5813-5818, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34132552

RESUMEN

Interaction of surface adsorbate vibration and intraband electron absorption in nanocrystals has been reported to affect the photophysical properties of both nanocrystals and surface adsorbates and may affect the performance of hybrid photocatalysts composed of semiconductor nanocrystals and molecular catalysts. Here, by combining ultrafast transient visible and IR spectroscopic measurements, we report the observation of Fano resonances between the intraband transition of the photogenerated electrons in CdS and CdSe nanocrystals and CO stretching vibrational modes of adsorbed molecular catalysts, [Fe2(cbdt)(CO)6] (FeFe; cbdt = 1-carboxyl-benzene-2,3-dithiolate), a molecular mimic for the active site of FeFe-hydrogenase. The occurrence of Fano resonances is independent of nanocrystal types (rods vs dots) or charge transfer character between the nanocrystal and FeFe, and is likely a general feature of nanocrystal and molecular catalyst hybrid systems. These results provide new insights into the fundamental interactions in these hybrid assemblies for artificial photosynthesis.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Catálisis , Electrones , Vibración
20.
J Am Chem Soc ; 143(21): 7991-7999, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34029060

RESUMEN

[FeFe] hydrogenase (H2ase) enzymes are effective proton reduction catalysts capable of forming molecular dihydrogen with a high turnover frequency at low overpotential. The active sites of these enzymes are buried within the protein structures, and substrates required for hydrogen evolution (both protons and electrons) are shuttled to the active sites through channels from the protein surface. Metal-organic frameworks (MOFs) provide a unique platform for mimicking such enzymes due to their inherent porosity which permits substrate diffusion and their structural tunability which allows for the incorporation of multiple functional linkers. Herein, we describe the preparation and characterization of a redox-active PCN-700-based MOF (PCN = porous coordination network) that features both a biomimetic model of the [FeFe] H2ase active site as well as a redox-active linker that acts as an electron mediator, thereby mimicking the function of [4Fe4S] clusters in the enzyme. Rigorous studies on the dual-functionalized MOF by cyclic voltammetry (CV) reveal similarities to the natural system but also important limitations in the MOF-enzyme analogy. Most importantly, and in contrast to the enzyme, restrictions apply to the total concentration of reduced linkers and charge-balancing counter cations that can be accommodated within the MOF. Successive charging of the MOF results in nonideal interactions between linkers and restricted mobility of charge-compensating redox-inactive counterions. Consequently, apparent diffusion coefficients are no longer constant, and expected redox features in the CVs of the materials are absent. Such nonlinear effects may play an important role in MOFs for (electro)catalytic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA