Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2201490119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35733270

RESUMEN

Excess bone loss due to increased osteoclastogenesis is a significant clinical problem. Intraflagellar transport (IFT) proteins have been reported to regulate cell growth and differentiation. The role of IFT80, an IFT complex B protein, in osteoclasts (OCs) is completely unknown. Here, we demonstrate that deletion of IFT80 in the myeloid lineage led to increased OC formation and activity accompanied by severe bone loss in mice. IFT80 regulated OC formation by associating with Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) to promote protein stabilization and proteasomal degradation of tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6). IFT80 knockdown resulted in increased ubiquitination of Cbl-b and higher TRAF6 levels, thereby hyperactivating the receptor activator of nuclear factor-κß (NF-κß) ligand (RANKL) signaling axis and increased OC formation. Ectopic overexpression of IFT80 rescued osteolysis in a calvarial model of bone loss. We have thus identified a negative function of IFT80 in OCs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Resorción Ósea , Proteínas Portadoras , Osteoclastos , Osteogénesis , Proteínas Proto-Oncogénicas c-cbl , Factor 6 Asociado a Receptor de TNF , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Resorción Ósea/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Eliminación de Gen , Ratones , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis/genética , Proteolisis , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitinación
2.
J Biol Chem ; 294(31): 11772-11784, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31189651

RESUMEN

Enhanced osteoclast-mediated bone resorption and diminished formation may promote bone loss. Pleckstrin homology (PH) domain and leucine-rich repeat protein phosphatase 1 (Phlpp1) regulates protein kinase C (PKC) and other proteins in the control of bone mass. Germline Phlpp1 deficiency reduces bone volume, but the mechanisms remain unknown. Here, we found that conditional Phlpp1 deletion in murine osteoclasts increases their numbers, but also enhances bone mass. Despite elevating osteoclasts, Phlpp1 deficiency did not increase serum markers of bone resorption, but elevated serum markers of bone formation. These results suggest that Phlpp1 suppresses osteoclast formation and production of paracrine factors controlling osteoblast activity. Phlpp1 deficiency elevated osteoclast numbers and size in ex vivo osteoclastogenesis assays, accompanied by enhanced expression of proto-oncogene C-Fms (C-Fms) and hyper-responsiveness to macrophage colony-stimulating factor (M-CSF) in bone marrow macrophages. Although Phlpp1 deficiency increased TRAP+ cell numbers, it suppressed actin-ring formation and bone resorption in these assays. We observed that Phlpp1 deficiency increases activity of PKCζ, a PKC isoform controlling cell polarity, and that addition of a PKCζ pseudosubstrate restores osteoclastogenesis and bone resorption of Phlpp1-deficient osteoclasts. Moreover, Phlpp1 deficiency increased expression of the bone-coupling factor collagen triple helix repeat-containing 1 (Cthrc1). Conditioned growth medium derived from Phlpp1-deficient osteoclasts enhanced mineralization of ex vivo osteoblast cultures, an effect that was abrogated by Cthrc1 knockdown. In summary, Phlpp1 critically regulates osteoclast numbers, and Phlpp1 deficiency enhances bone mass despite higher osteoclast numbers because it apparently disrupts PKCζ activity, cell polarity, and bone resorption and increases secretion of bone-forming Cthrc1.


Asunto(s)
Osteogénesis , Fosfoproteínas Fosfatasas/metabolismo , Animales , Densidad Ósea , Resorción Ósea/metabolismo , Resorción Ósea/patología , Huesos/diagnóstico por imagen , Huesos/fisiología , Diferenciación Celular/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Factor Estimulante de Colonias de Macrófagos/farmacología , Masculino , Ratones , Ratones Noqueados , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/genética , Proteína Quinasa C/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
3.
J Biol Chem ; 288(8): 5398-406, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23300082

RESUMEN

Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways.


Asunto(s)
Células Madre Mesenquimatosas/citología , Receptores de Lisoesfingolípidos/metabolismo , Animales , Resorción Ósea , Movimiento Celular , Células Cultivadas/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Osteoblastos/citología , Osteogénesis , Transducción de Señal , Receptores de Esfingosina-1-Fosfato , Proteínas de Unión al GTP rho/metabolismo
4.
Curr Osteoporos Rep ; 12(1): 107-14, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24477413

RESUMEN

The SOST gene, which encodes the protein sclerostin, was identified through genetic linkage analysis of sclerosteosis and van Buchem's disease patients. Sclerostin is a secreted glycoprotein that binds to the low-density lipoprotein receptor-related proteins 4, 5, and 6 to inhibit Wnt signaling. Since the initial discovery of sclerostin, much understanding has been gained into the role of this protein in the regulation of skeletal biology. In this article, we discuss the latest findings in the regulation of SOST expression, sclerostin mechanisms of action, and the potential utility of targeting sclerostin in conditions of low bone mass.


Asunto(s)
Densidad Ósea/fisiología , Proteínas Morfogenéticas Óseas/fisiología , Marcadores Genéticos/fisiología , Vía de Señalización Wnt/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Morfogenéticas Óseas/genética , Regulación de la Expresión Génica , Marcadores Genéticos/genética , Humanos , Proteínas Relacionadas con Receptor de LDL , Transducción de Señal/fisiología
5.
J Cell Biochem ; 114(8): 1901-1907, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23494985

RESUMEN

Osteoclast-mediated bone resorption precedes osteoblast-mediated bone formation through early adulthood, but formation fails to keep pace with resorption during aging. We previously identified several factors produced by osteoclasts that promote bone formation. In this study, we determined if osteoclast-produced factors contribute to the impaired bone formation with aging. We previously found that mice between the ages of 18 and 22 months develop age-related bone loss. Bone marrow-derived pre-osteoclasts were isolated from 6-week, 12-month, and 18- to 24-month-old mice and differentiated into osteoclasts in vitro. Conditioned media were collected and compared for osteoblast mineralization support. Conditioned medium from osteoclasts from all ages was able to support mineralization of bone marrow stromal cells. Concentrating the conditioned medium from 6-week-old and 12-month-old mouse marrow cells-derived osteoclasts enhanced mineralization support whereas concentrated conditioned medium from 18- to 24-month-old mouse marrow-derived osteoclasts repressed mineralization compared to base medium. This observation suggests that an inhibitor of mineralization was secreted by aged murine osteoclasts. Gene and protein analysis revealed that the Wnt antagonist sclerostin was significantly elevated in the conditioned media from 24-month-old mouse cells compared to 6-week-old mouse cells. Antibodies directed to sclerostin neutralized the influences of the aged mouse cell concentrated conditioned media on mineralization. Sclerostin is primarily produced by osteocytes in young animals. This study demonstrates that osteoclasts from aged mice also produce sclerostin in quantities that may contribute to the age-related impairment in bone formation.


Asunto(s)
Envejecimiento/metabolismo , Calcificación Fisiológica/fisiología , Regulación de la Expresión Génica/fisiología , Glicoproteínas/biosíntesis , Osteoclastos/metabolismo , Osteogénesis/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Células Cultivadas , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos BALB C , Osteoclastos/citología
6.
Curr Osteoporos Rep ; 11(2): 72-82, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23605904

RESUMEN

MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression that control osteoblast mediated bone formation and osteoclast-related bone remodeling. Deregulation of miRNA mediated mechanisms is emerging as an important pathological factor in bone degeneration (eg, osteoporosis) and other bone-related diseases. MiRNAs are intriguing regulatory molecules that are networked with cell signaling pathways and intricate transcriptional programs through ingenuous circuits with remarkably simple logic. This overview examines key principles by which miRNAs control differentiation of osteoblasts as they evolve from mesenchymal stromal cells during osteogenesis, or of osteoclasts as they originate from monocytic precursors in the hematopoietic lineage during osteoclastogenesis. Of particular note are miRNAs that are temporally upregulated during osteoblastogenesis (eg, miR-218) or osteoclastogenesis (eg, miR-148a). Each miRNA stimulates differentiation by suppressing inhibitory signaling pathways ('double-negative' regulation). The excitement surrounding miRNAs in bone biology stems from the prominent effects that individual miRNAs can have on biological transitions during differentiation of skeletal cells and correlations of miRNA dysfunction with bone diseases. MiRNAs have significant clinical potential which is reflected by their versatility as disease-specific biomarkers and their promise as therapeutic agents to ameliorate or reverse bone tissue degeneration.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/fisiología , Osteogénesis/genética , Osteoporosis/genética , Remodelación Ósea , Humanos , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoporosis/metabolismo , Osteoporosis/patología , Transducción de Señal
7.
J Bone Miner Res ; 37(9): 1750-1760, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35789113

RESUMEN

Estrogen is known to regulate bone metabolism in both women and men, but substantial gaps remain in our knowledge of estrogen and estrogen receptor alpha (ERα) regulation of adult bone metabolism. Studies using global ERα-knockout mice were confounded by high circulating sex-steroid levels, and osteocyte/osteoblast-specific ERα deletion may be confounded by ERα effects on growth versus the adult skeleton. Thus, we developed mice expressing the tamoxifen-inducible CreERT2 in osteocytes using the 8-kilobase (kb) Dmp1 promoter (Dmp1CreERT2 ). These mice were crossed with ERαfl//fl mice to create ERαΔOcy mice, permitting inducible osteocyte-specific ERα deletion in adulthood. After intermittent tamoxifen treatment of adult 4-month-old mice for 1 month, female, but not male, ERαΔOcy mice exhibited reduced spine bone volume fraction (BV/TV (-20.1%, p = 0.004) accompanied by decreased trabecular bone formation rate (-18.9%, p = 0.0496) and serum P1NP levels (-38.9%, p = 0.014). Periosteal (+65.6%, p = 0.004) and endocortical (+64.1%, p = 0.003) expansion were higher in ERαΔOcy mice compared to control (Dmp1CreERT2 ) mice at the tibial diaphysis, reflecting the known effects of estrogen to inhibit periosteal apposition and promote endocortical formation. Increases in Sost (2.1-fold, p = 0.001) messenger RNA (mRNA) levels were observed in trabecular bone at the spine in ERαΔOcy mice, consistent with previous reports that estrogen deficiency is associated with increased circulating sclerostin as well as bone SOST mRNA levels in humans. Further, the biological consequences of increased Sost expression were reflected in significant overall downregulation in panels of osteoblast and Wnt target genes in osteocyte-enriched bones from ERαΔOcy mice. These findings thus establish that osteocytic ERα is critical for estrogen action in female, but not male, adult bone metabolism. Moreover, the reduction in bone formation accompanied by increased Sost, decreased osteoblast, and decreased Wnt target gene expression in ERαΔOcy mice provides a direct link in vivo between ERα and Wnt signaling. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Receptor alfa de Estrógeno , Osteocitos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Animales , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Humanos , Lactante , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteocitos/metabolismo , ARN Mensajero/metabolismo , Tamoxifeno/farmacología
8.
J Cell Biochem ; 112(5): 1392-402, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21321991

RESUMEN

Although osteosarcoma represents the most common bone malignancy, the molecular and cellular mechanisms influencing its pathogenesis have remained elusive. Recent evidence has suggested that the Wnt signaling pathway may play a crucial role in osteosarcoma. This study employed a microarray approach to discover novel genes and pathways involved in Wnt signaling in osteosarcoma. We developed a Wnt10b-expressing cell line using the human U2OS osteosarcoma model (U2OS-Wnt10b) and performed microarray and pathway analyses using parental U2OS cells as control. Differential expression of 1,003 genes encompassing 28 pathways was noted. The Wnt, NFκB, and Notch pathways were chosen for further study based on their known importance in bone biology. Known Wnt-responsive genes Axin-2 (4.9-fold), CD44 (2.1-fold), endothelin-1 (4.2-fold) and sclerostin domain containing-1 (43-fold) were regulated by Wnt10b. The proinflammatory cytokines interleukin-1α and tumor necrosis factor-α, known inducers of NFκB, were upregulated both at the transcript and protein level, and NFκB reporter activity was stimulated 3.8-fold, confirming NFκB activation. Interestingly, genes involved in Notch signaling [Notch-1 (2.4-fold) and Jagged-1 (3.1-fold)] were upregulated, whereas the Notch inhibitor, lunatic fringe, was downregulated (8.2-fold). This resulted in the activation of the classic Notch-responsive genes, hairy and enhancer of split-1 (Hes-1; 2.2-fold) and hairy/enhancer-of-split related with YRPW motif-1 (Hey-1; 2.5-fold). A Hey-1 reporter construct was regulated 9.1-fold in U2OS-Wnt10b cells, confirming Notch activation. Interestingly, Wnt3a failed to induce the Notch and NFκB pathways, demonstrating Wnt-specificity. In conclusion, our data demonstrate that Wnt10b, but not Wnt3a, stimulates the NFκB and Notch pathways in U2OS osteosarcoma cells.


Asunto(s)
Neoplasias Óseas/genética , Regulación Neoplásica de la Expresión Génica , Osteosarcoma/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/metabolismo , Proteínas Wnt/metabolismo , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteosarcoma/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Receptores Notch/genética , Transducción de Señal/genética , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A , Quinasa de Factor Nuclear kappa B
9.
J Clin Invest ; 118(2): 421-8, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18246192

RESUMEN

An important, unfilled clinical need is the development of new approaches to improve fracture healing and to treat osteoporosis by increasing bone mass. Recombinant forms of bone morphogenetic protein 2 (BMP2) and BMP7 are FDA approved to promote spinal fusion and fracture healing, respectively, and the first FDA-approved anabolic drug for osteoporosis, parathyroid hormone, increases bone mass when administered intermittently but can only be given to patients in the US for two years. As we discuss here, the tremendous explosion over the last two decades in our fundamental understanding of the mechanisms of bone remodeling has led to the prospect of mechanism-based anabolic therapies for bone disorders.


Asunto(s)
Anabolizantes/uso terapéutico , Remodelación Ósea/efectos de los fármacos , Fracturas Óseas/tratamiento farmacológico , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Anabolizantes/farmacología , Diferenciación Celular , Diseño de Fármacos , Humanos , Osteocitos/efectos de los fármacos , Hormona Paratiroidea/farmacología , Hormona Paratiroidea/uso terapéutico
10.
Proc Natl Acad Sci U S A ; 105(52): 20764-9, 2008 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19075223

RESUMEN

Under most conditions, resorbed bone is nearly precisely replaced in location and amount by new bone. Thus, it has long been recognized that bone loss through osteoclast-mediated bone resorption and bone replacement through osteoblast-mediated bone formation are tightly coupled processes. Abundant data conclusively demonstrate that osteoblasts direct osteoclast differentiation. Key questions remain, however, as to how osteoblasts are recruited to the resorption site and how the amount of bone produced is so precisely controlled. We hypothesized that osteoclasts play a crucial role in the promotion of bone formation. We found that osteoclast conditioned medium stimulates human mesenchymal stem (hMS) cell migration and differentiation toward the osteoblast lineage as measured by mineralized nodule formation in vitro. We identified candidate osteoclast-derived coupling factors using the Affymetrix microarray. We observed significant induction of sphingosine kinase 1 (SPHK1), which catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), in mature multinucleated osteoclasts as compared with preosteoclasts. S1P induces osteoblast precursor recruitment and promotes mature cell survival. Wnt10b and BMP6 also were significantly increased in mature osteoclasts, whereas sclerostin levels decreased during differentiation. Stimulation of hMS cell nodule formation by osteoclast conditioned media was attenuated by the Wnt antagonist Dkk1, a BMP6-neutralizing antibody, and by a S1P antagonist. BMP6 antibodies and the S1P antagonist, but not Dkk1, reduced osteoclast conditioned media-induced hMS chemokinesis. In summary, our findings indicate that osteoclasts may recruit osteoprogenitors to the site of bone remodeling through SIP and BMP6 and stimulate bone formation through increased activation of Wnt/BMP pathways.


Asunto(s)
Proteína Morfogenética Ósea 6/metabolismo , Quimiocinas/metabolismo , Lisofosfolípidos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Esfingosina/análogos & derivados , Proteínas Wnt/metabolismo , Animales , Calcificación Fisiológica/fisiología , Diferenciación Celular/fisiología , Línea Celular , Movimiento Celular/fisiología , Medios de Cultivo Condicionados , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Osteoclastos/citología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/metabolismo
11.
J Cell Biochem ; 110(5): 1058-62, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20564220

RESUMEN

Bone marrow macrophages fuse on the bone surface to form multinucleated osteoclasts that then organize to efficiently resorb bone. Many, if not all, of the stages of macrophage fusion involve cytoskeletal components that reorganize the cells. Recruitment may involve chemotactic responses to bone matrix protein and calcium ion gradients and/or chemokine production by bone forming osteoblasts. The roles of integrins vary, depending on the particular subunits with some interfering with fusion and others having a participatory role. RANKL is essential for fusion and many identified modulators of fusion influence RANKL signaling pathways. Tetraspanins have been implicated in fusion of macrophages and myoblasts, but differences in impacts exist between these two cell types. Macrophage recruitment to apoptotic cells prior to their engulfment is driven by the exposed phospholipids on the external surface of the apoptotic cells and there is evidence that this same identification mechanism is employed in macrophage fusion. Because loss of cadherin or ADAM family members suppresses macrophage fusion, a crucial role for these membrane glycoproteins is evident. The Ig membrane glycoprotein superfamily members CD200 and MFR/SIRPalpha are involved in macrophage fusion, although their influences are unresolved. Differential screenings have identified the structurally related membrane proteins DC-STAMP and OC-STAMP as required components for fusion and the contributions to fusion remain active areas of investigation. While many of the key components involved in these processes have been identified, a great deal of work remains in resolving the precise processes involved and the interactions between key contributors to multinucleated osteoclast formation.


Asunto(s)
Resorción Ósea/metabolismo , Células Gigantes/metabolismo , Macrófagos/metabolismo , Osteoclastos/metabolismo , Proteínas ADAM/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Antígenos CD/metabolismo , Resorción Ósea/patología , Cadherinas/metabolismo , Adhesión Celular , Fusión Celular , Células Gigantes/citología , Humanos , Integrinas/metabolismo , Macrófagos/citología , Proteínas de la Membrana/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoclastos/citología , Ligando RANK/metabolismo
12.
iScience ; 23(6): 101172, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32512384

RESUMEN

Rheumatoid arthritis (RA) is the most common inflammatory disease, which currently lacks effective treatment. Here, we discovered that the Regulator of G Protein Signaling 12 (RGS12) plays a key role in regulating inflammation. Transcriptional and protein analysis revealed that RGS12 was upregulated in human and mouse RA macrophages. Deletion of RGS12 in myeloid lineage or globally inhibits the development of collagen-induced arthritis including joint swelling and bone destruction. Mechanistically, RGS12 associates with NF-κB(p65) to activate its phosphorylation and nuclear translocation through PTB domain, and NF-κB(p65) regulates RGS12 expression in a transcriptional manner. The nuclear translocation ability of NF-κB(p65) and RGS12 can both be enhanced by cyclooxygenase-2 (COX2). Furthermore, ablation of RGS12 via RNA interference significantly blocks the inflammatory process in vivo and in vitro. These results demonstrate that RGS12 plays a critical role in the pathogenesis of inflammatory arthritis.

13.
Nat Commun ; 11(1): 87, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911667

RESUMEN

Bone remodeling consists of resorption by osteoclasts followed by formation by osteoblasts, and osteoclasts are a source of bone formation-stimulating factors. Here we utilize osteoclast ablation by denosumab (DMAb) and RNA-sequencing of bone biopsies from postmenopausal women to identify osteoclast-secreted factors suppressed by DMAb. Based on these analyses, LIF, CREG2, CST3, CCBE1, and DPP4 are likely osteoclast-derived coupling factors in humans. Given the role of Dipeptidyl Peptidase-4 (DPP4) in glucose homeostasis, we further demonstrate that DMAb-treated participants have a significant reduction in circulating DPP4 and increase in Glucagon-like peptide (GLP)-1 levels as compared to the placebo-treated group, and also that type 2 diabetic patients treated with DMAb show significant reductions in HbA1c as compared to patients treated either with bisphosphonates or calcium and vitamin D. Thus, our results identify several coupling factors in humans and uncover osteoclast-derived DPP4 as a potential link between bone remodeling and energy metabolism.


Asunto(s)
Huesos/metabolismo , Metabolismo Energético , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Remodelación Ósea , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Denosumab/administración & dosificación , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Humanos , Persona de Mediana Edad , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Estudios Prospectivos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
14.
Exp Cell Res ; 314(15): 2725-38, 2008 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-18586026

RESUMEN

To better understand the roles of TGF-beta in bone metabolism, we investigated osteoclast survival in response TGF-beta and found that TGF-beta inhibited apoptosis. We examined the receptors involved in promotion of osteoclast survival and found that the canonical TGF-beta receptor complex is involved in the survival response. The upstream MEK kinase TAK1 was rapidly activated following TGF-beta treatment. Since osteoclast survival involves MEK, AKT, and NFkappaB activation, we examined TGF-beta effects on activation of these pathways and observed rapid phosphorylation of MEK, AKT, IKK, IkappaB, and NFkappaB. The timing of activation coincided with SMAD activation and dominant negative SMAD expression did not inhibit NFkappaB activation, indicating that kinase pathway activation is independent of SMAD signaling. Inhibition of TAK1, MEK, AKT, NIK, IKK, or NFkappaB repressed TGF-beta-mediated osteoclast survival. Adenoviral-mediated TAK1 or MEK inhibition eliminated TGF-beta-mediated kinase pathway activation and constitutively active AKT expression overcame apoptosis induction following MEK inhibition. TAK1/MEK activation induces pro-survival BclX(L) expression and TAK1/MEK and SMAD pathway activation induces pro-survival Mcl-1 expression. These data show that TGF-beta-induced NFkappaB activation is through TAK1/MEK-mediated AKT activation, which is essential for TGF-beta to support of osteoclast survival.


Asunto(s)
Huesos/enzimología , Osteoclastos/enzimología , Fosfotransferasas/metabolismo , Transducción de Señal/fisiología , Proteína Smad1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , MAP Quinasa Quinasa 1/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Osteoclastos/efectos de los fármacos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/fisiología , Factor de Crecimiento Transformador beta/farmacología
15.
Mol Endocrinol ; 22(7): 1579-95, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18483178

RESUMEN

The estrogen receptors (ER) alpha and beta are important ligand-mediated transcription factors known to play significant biological roles in numerous tissues including bone. Despite the high homology shared by these receptors, recent studies have suggested that their function is largely unique. Although these receptors have been studied in detail for more than a decade, little data exist concerning the mechanisms by which these two proteins regulate distinct sets of genes. Using the TGFbeta-inducible early gene-1 (TIEG) as a model, we demonstrate that TIEG is rapidly induced in response to estrogen in osteoblasts by ERbeta, but not ERalpha. We have identified the regulatory elements utilized by ERbeta and have demonstrated that ERbeta recruits steroid receptor coactivator (SRC)1 and SRC2 to this regulatory region. Additionally, deletion of the ERbeta-activation function 1 (AF1) domain drastically decreases the estrogen induction of TIEG. Through the use of chimeric receptors, we have demonstrated that the AF1 domain of ERbeta is responsible for recruiting SRC1 and SRC2 and inducing the expression of TIEG in osteoblasts. Finally, SRC1, but not SRC2, is essential for TIEG induction by ERbeta. Overall, these data demonstrate that the estrogen induction of TIEG is ERbeta specific and that the AF1 domain of ERbeta confers this specificity. Finally, a novel and important role for ERbeta's AF1 is implicated in the recruitment of specific coactivators, suggesting that the AF1 may play a significant role in conferring the differences in regulation of gene expression by these two receptors.


Asunto(s)
Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Histona Acetiltransferasas/metabolismo , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Coactivador 1 de Receptor Nuclear , Coactivador 2 del Receptor Nuclear/metabolismo , Osteoblastos/metabolismo , Isoformas de Proteínas , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Factores de Transcripción/metabolismo
16.
Elife ; 82019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31490121

RESUMEN

Regulators of G-protein Signaling are a conserved family of proteins required in various biological processes including cell differentiation. We previously demonstrated that Rgs12 is essential for osteoclast differentiation and its deletion in vivo protected mice against pathological bone loss. To characterize its mechanism in osteoclastogenesis, we selectively deleted Rgs12 in C57BL/6J mice targeting osteoclast precursors using LyzM-driven Cre mice or overexpressed Rgs12 in RAW264.7 cells. Rgs12 deletion in vivo led to an osteopetrotic phenotype evidenced by increased trabecular bone, decreased osteoclast number and activity but no change in osteoblast number and bone formation. Rgs12 overexpression increased osteoclast number and size, and bone resorption activity. Proteomics analysis of Rgs12-depleted osteoclasts identified an upregulation of antioxidant enzymes under the transcriptional regulation of Nrf2, the master regulator of oxidative stress. We confirmed an increase of Nrf2 activity and impaired reactive oxygen species production in Rgs12-deficient cells. Conversely, Rgs12 overexpression suppressed Nrf2 through a mechanism dependent on the 26S proteasome, and promoted RANKL-induced phosphorylation of ERK1/2 and NFκB, which was abrogated by antioxidant treatment. Our study therefore identified a novel role of Rgs12 in regulating Nrf2, thereby controlling cellular redox state and osteoclast differentiation.


Asunto(s)
Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Osteogénesis , Proteínas RGS/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células RAW 264.7 , Proteínas RGS/deficiencia
17.
J Cell Biochem ; 104(4): 1439-51, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18275061

RESUMEN

While M-CSF-mediated MEK/ERK activation promotes osteoclast survival, the signaling pathway by which M-CSF activates MEK/ERK is unresolved. Functions for PI3K, Ras, and Raf have been implicated in support of osteoclast survival, although interaction between these signaling components has not been examined. Therefore, the interplay between PI3K, Ras and Raf in M-CSF-promoted MEK/ERK activation and osteoclast survival was investigated. M-CSF activates Ras to coordinate activation of PI3K and Raf/MEK/ERK, since Ras inhibition decreased PI3K activation and PI3K inhibition did not block M-CSF-mediated Ras activation. As further support for Ras-mediated signaling, constitutively active (ca) Ras promoted MEK/ERK activation and osteoclast survival, which was blocked by inhibition of PI3K or Raf. Moreover, PI3K-selective or Raf-selective caRas were only partially able to promote osteoclast survival when compared to parental caRas. We then examined whether PI3K and Raf function linearly or in parallel downstream of Ras. Expression of caPI3K increased MEK/ERK activation and promoted osteoclast survival downstream of M-CSF, supporting this hypothesis. Blocking Raf did not decrease osteoclast survival and MEK/ERK activation promoted by caPI3K. In addition, PI3K-selective Ras-mediated survival was not blocked by Raf inhibition. Taken together, our data support that Raf signaling is separate from Ras/PI3K signaling and PI3K signaling is separate from Ras/Raf signaling. These data therefore support a role for Ras in coordinate activation of PI3K and Raf acting in parallel to mediate MEK/ERK-promoted osteoclast survival induced by M-CSF.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Factor Estimulante de Colonias de Macrófagos/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Osteoclastos/citología , Receptor Cross-Talk , Transducción de Señal , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Quinasas raf/metabolismo , Proteínas ras/metabolismo
18.
J Cell Biochem ; 103(3): 896-907, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17614350

RESUMEN

Estrogen receptor (ER)-alpha can signal either via estrogen response element (ERE)-mediated pathways or via alternate pathways involving protein-protein or membrane signaling. We previously demonstrated that, as compared to wild type (WT) controls, mice expressing a mutant ER-alpha lacking the ability to bind EREs (non-classical estrogen receptor knock-in (NERKI)) display significant impairments in the skeletal response to estrogen. To elucidate the mechanism(s) underlying these in vivo deficits, we generated U2OS cells stably expressing either WT ER-alpha or the NERKI receptor. Compared to cells transfected with the control vector, stable expression of ER-alpha, even in the absence of E2, resulted in an increase in mRNA levels for alkaline phosphatase (AP, by 400%, P < 0.01) and a decrease in mRNA levels for insulin growth factor-I (IGF-I) (by 65%, P < 0.001), with no effects on collagen I (col I) or osteocalcin (OCN) mRNA levels. By contrast, stable expression of the NERKI receptor resulted in the suppression of mRNA levels for AP, col I, OCN, and IGF-I (by 62, 89, 60, and 70%, P < 0.001). While E2 increased mRNA levels of AP, OCN, col I, and IGF-I in ER-alpha cells, E2 effects in the NERKI cells on AP and OCN mRNA levels were attenuated, with a trend for E2 to inhibit col I mRNA levels. In addition, E2 had no effects on IGF-I mRNA levels in NERKI cells. Collectively, these findings indicate that ERE signaling plays a significant role in mediating effects of estrogen on osteoblastic differentiation markers and on IGF-I mRNA levels.


Asunto(s)
Desarrollo Óseo/genética , Huesos/fisiología , Receptor alfa de Estrógeno/metabolismo , Estrógenos/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Osteoblastos/metabolismo , Transcripción Genética/genética , Fosfatasa Alcalina/metabolismo , Animales , Desarrollo Óseo/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Colágeno/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/deficiencia , Receptor alfa de Estrógeno/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Osteoblastos/efectos de los fármacos , Osteocalcina/metabolismo , ARN Mensajero/biosíntesis , Elementos de Respuesta/efectos de los fármacos , Elementos de Respuesta/fisiología , Transducción de Señal/fisiología
19.
Mol Cell Biol ; 25(3): 1191-9, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15657444

RESUMEN

Transforming growth factor beta-inducible early gene 1 (TIEG1) is a member of the Kruppel-like transcription factor family. To understand the physiological role of TIEG1, we generated TIEG(-/-) (null) mice and found that the TIEG(-/-) mice had increased osteoblast numbers with no increased bone formation parameters. However, when calvarial osteoblasts (OBs) were isolated from neonatal TIEG(-/-) and TIEG(+/+) mice and cultured in vitro, the TIEG(-/-) cells displayed reduced expression of important OB differentiation markers. When the OBs were differentiated in vitro by treatment with bone morphogenic protein 2, the OBs from TIEG(+/+) calvaria displayed several mineralized nodules in culture, whereas those from TIEG(-/-) mice showed no nodules. To characterize the OBs' ability to support osteoclast differentiation, the OBs from TIEG(+/+) and TIEG(-/-) mice were cultured with marrow and spleen cells from TIEG(+/+) mice. Significantly fewer osteoclasts developed when TIEG(-/-) OBs were used to support osteoclast differentiation than when TIEG(+/+) OBs were used. Examination of gene expression in the TIEG(-/-) OBs revealed decreased RANKL and increased OPG expression compared to TIEG(+/+) OBs. The addition of RANKL to these cocultures only partially restored the ability of TIEG(-/-) OBs to support osteoclast differentiation, whereas M-CSF alone or combined with RANKL had no additional effect on osteoclast differentiation. We conclude from these data that TIEG1 expression in OBs is critical for both osteoblast-mediated mineralization and osteoblast support of osteoclast differentiation.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Osteoblastos/citología , Osteoclastos/citología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Médula Ósea/metabolismo , Proteína Morfogenética Ósea 2 , Calcificación Fisiológica/fisiología , Proteínas Portadoras/metabolismo , Proliferación Celular , Técnicas de Cocultivo , Proteínas de Unión al ADN/genética , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoprotegerina , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores del Factor de Necrosis Tumoral , Bazo/citología , Bazo/metabolismo , Factores de Transcripción/genética
20.
Methods Mol Biol ; 455: 19-35, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18463808

RESUMEN

Bone homeostasis depends on balanced bone deposition and bone resorption, which are mediated by osteoblasts and osteoclasts, respectively. The process of bone turnover requires the coordination of these cells. Changes in the ability of either cell type to perform its function results in pathological conditions such as osteoporosis and tumor-induced bone loss (osteolysis). The number of osteoclasts present at the site of bone remodeling as well as the activity of those osteoclasts the control amount of bone resorbed (1). Therefore, factors affecting overall numbers of osteoclasts and osteoclast activation are key to regulating bone loss. Osteoclast numbers are in part controlled by osteoclast differentiation from bone marrow precursors of the monocyte/macrophage lineage (2). Differentiation of these hematopoietic precursors into osteoclasts is supported by bone marrow stromal cell production of two cytokines, receptor activator of NF-kappaB ligand (RANKL) and macrophage colony stimulating factor (M-CSF), which are both necessary and sufficient to mediate osteoclast differentiation (3, 4). Although RANKL production by the stroma supports osteoclast differentiation, this process is antagonized by osteoprotogerin (OPG) production, which acts as a soluble decoy receptor for RANKL (5, 6). Mechanistic studies to elucidate the factors influencing bone metabolism necessitate in vitro studies of osteoclast differentiation, activation and survival. There are a number of in vitro methods used to culture and study osteoclasts, some of which are described in this chapter.


Asunto(s)
Bioensayo/métodos , Resorción Ósea , Técnicas de Cocultivo , Osteoclastos , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Remodelación Ósea/fisiología , Antígeno CD11b/metabolismo , Diferenciación Celular , Separación Celular/métodos , Células Cultivadas , Homeostasis , Humanos , Receptores de Lipopolisacáridos/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Magnetismo , Ratones , Técnicas de Cultivo de Órganos , Osteoclastos/citología , Osteoclastos/fisiología , Ligando RANK/metabolismo , Bazo/citología , Células del Estroma/citología , Células del Estroma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA