Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microb Pathog ; 189: 106567, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364877

RESUMEN

Human ascariasis is the most prevalent helminth infection, affecting 445 million people worldwide. To better understand the impact of the immune system on the pathophysiology of individuals infected with Ascaris suum, mice have been used as experimental models. The RT-qPCR technique is a critical auxiliary tool of investigation used to quantify mRNA levels. However, proper normalization using reference genes is essential to ensure reliable outcomes to avoid analytical errors and false results. Despite the importance of reference genes for experimental A. suum infection studies, no specific reference genes have been identified yet. Therefore, we conducted a study to assess five potential reference genes (GAPDH, 18s, ACTB, B2M, and HPRT1) in different tissues (liver, lungs, small and large intestines) affected by A. suum larval migration in C57BL/6j mice. Tissue collection was carried out to analyze parasite burden and confirm the presence of larvae during the peak of migration in each tissue. Upon confirmation, we analyzed different genes in the tissues and found no common gene with stable expression. Our results highlight the importance of analyzing different genes and using different software programs to ensure reliable relative expression results. Based on our findings, B2M was ranked as the ideal reference gene for the liver, while 18S was the most stable gene in the lung and small intestine. ACTB, or a combination of ACTB with GAPDH, was deemed suitable as reference genes for the large intestine due to their stable expression and less variation between the control and infected groups. To further demonstrate the impact of using different reference genes, we normalized the expression of a chemokine gene (CXCL9) in all tissues. Significant differences in CXCL9 expression levels were observed between different groups in all tissues except for the large intestine. This underscores the importance of selecting appropriate reference genes to avoid overestimating target gene expression levels and encountering normalization-related issues that can lead to false results. In conclusion, our study highlights the significance of using reliable reference genes for accurate RT-qPCR analysis, especially in the context of A. suum infection studies in different tissues. Proper normalization is crucial to ensure the validity of gene expression data and avoid potential pitfalls in interpreting results.


Asunto(s)
Ascaris suum , Humanos , Ratones , Animales , Ascaris suum/genética , Ratones Endogámicos C57BL , Perfilación de la Expresión Génica , Programas Informáticos , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Front Immunol ; 13: 864632, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844540

RESUMEN

IL-17 is a cytokine produced by innate and acquired immunity cells that have an action against fungi and bacteria. However, its action in helminth infections is unclear, including in Toxocara canis infection. Toxocariasis is a neglected zoonosis representing a significant public health problem with an estimated seroprevalence of 19% worldwide. In the present study, we describe the immunopathological action of IL-17RA in acute T. canis infection. C57BL/6j (WT) and IL-17RA receptor knockout (IL-17RA-/-) mice were infected with 1000 T. canis eggs. Mice were evaluated 3 days post-infection for parasite load and white blood cell count. Lung tissue was harvested for histopathology and cytokine expression. In addition, we performed multiparametric flow cytometry in the BAL and peripheral blood, evaluating phenotypic and functional changes in myeloid and lymphoid populations. We showed that IL-17RA is essential to control larvae load in the lung; however, IL-17RA contributed to pulmonary inflammation, inducing inflammatory nodular aggregates formation and presented higher pulmonary IL-6 levels. The absence of IL-17RA was associated with a higher frequency of neutrophils as a source of IL-4 in BAL, while in the presence of IL-17RA, mice display a higher frequency of alveolar macrophages expressing the same cytokine. Taken together, this study indicates that neutrophils may be an important source of IL-4 in the lungs during T. canis infection. Furthermore, IL-17/IL-17RA axis is important to control parasite load, however, its presence triggers lung inflammation that can lead to tissue damage.


Asunto(s)
Neumonía , Receptores de Interleucina-17 , Toxocara canis , Toxocariasis , Animales , Citocinas/inmunología , Interleucina-17/inmunología , Interleucina-4/inmunología , Ratones , Ratones Endogámicos C57BL , Neumonía/inmunología , Neumonía/parasitología , Receptores de Interleucina-17/inmunología , Toxocara canis/inmunología , Toxocariasis/inmunología , Toxocariasis/parasitología
4.
PLoS Negl Trop Dis ; 15(7): e0009639, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34324507

RESUMEN

Toxocariasis is a neglected disease that affects people around the world. Humans become infected by accidental ingestion of eggs containing Toxocara canis infective larvae, which upon reaching the intestine, hatch, penetrate the mucosa and migrate to various tissues such as liver, lungs and brain. Studies have indicated that Th2 response is the main immune defense mechanism against toxocariasis, however, there are still few studies related to this response, mainly the IL-33/ST2 pathway. Some studies have reported an increase in IL-33 during helminth infections, including T. canis. By binding to its ST2 receptor, IL-33 stimulating the Th2 polarized immune cell and cytokine responses. Thus, we aimed to investigate the role of the IL-33/ST2 pathway in the context of T. canis larval migration and the immunological and pathophysiological aspects of the infection in the liver, lungs and brain from Wild-Type (WT) BALB/c background and genetically deficient mice for the ST2 receptor (ST2-/-). The most important findings revealed that the IL-33/ST2 pathway is involved in eosinophilia, hepatic and cerebral parasitic burden, and induces the formation of granulomas related to tissue damage and pulmonary dysfunction. However, ST2-/- mice, the immune response was skewed to Th1/Th17 type than Th2, that enhanced the control of parasite burden related to IgG2a levels, tissue macrophages infiltration and reduced lung dysfunction. Collectively, our results demonstrate that the Th2 immune response triggered by IL-33/ST2 pathway mediates susceptibility to T. canis, related to parasitic burden, eosinophilia and granuloma formation in which consequently contributes to tissue inflammation and injury.


Asunto(s)
Eosinófilos/fisiología , Inflamación/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Toxocara canis , Toxocariasis/inmunología , Animales , Femenino , Regulación de la Expresión Génica , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células Th2/fisiología , Toxocariasis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA