Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38659953

RESUMEN

Obesity is a global health crisis that contributes to morbidity and mortality worldwide. Obesity's comorbid association with a variety of diseases, from metabolic syndrome to neurodegenerative disease, underscores the critical need to better understand the pathobiology of obesity. Adipose tissue, once seen as an inert storage depot, is now recognized as an active endocrine organ, regulating metabolic and systemic homeostasis. Recent studies spotlight the theranostic utility of extracellular vesicles (EVs) as novel biomarkers and drivers of disease, including obesity-related complications. Adipose-derived EVs (ADEVs) have garnered increased interest for their roles in diverse diseases, however robust isolation and characterization protocols for human, cell-specific EV subsets are limited. Herein, we directly address this technical challenge by establishing a multiparametric analysis framework that leverages bulk and single EV characterization, mRNA phenotyping and proteomics of human ADEVs directly from paired visceral adipose tissue, cultured mature adipocyte conditioned media, and plasma from obese subjects undergoing bariatric surgery. Importantly, rigorous EV phenotyping at the tissue and cell-specific level identified top 'adipose liquid biopsy' candidates that were validated in circulating plasma EVs from the same patient. In summary, our study paves the way toward a tissue and cell-specific, multiparametric framework for studying tissue and circulating adipose EVs in obesity-driven disease.

2.
J Extracell Vesicles ; 13(1): e12397, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38158550

RESUMEN

Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world-wide survey to ISEV members to assess methods considered 'best practices' for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies.


Asunto(s)
Vesículas Extracelulares , Biomarcadores/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Reproducibilidad de los Resultados
3.
J Neuroimmunol ; 377: 578064, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934525

RESUMEN

Multiple Sclerosis (MS) is a chronic, inflammatory demyelinating disease of the central nervous system (CNS) driven by a complex interplay of genetic and environmental factors. While the therapeutic arsenal has expanded significantly for management of relapsing forms of MS, treatment of individuals with progressive MS is suboptimal. This treatment inequality is in part due to an incomplete understanding of pathomechanisms at different stages of the disease-underscoring the critical need for new biomarkers. Extracellular vesicles (EVs) and their bioactive cargo have emerged as endogenous nanoparticles with great theranostic potential-as diagnostic and prognostic biomarkers and ultimately as therapeutic candidates for precision nanotherapeutics. The goals of this review are to: 1) summarize the current data investigating the role of EVs and their bioactive cargo in MS pathogenesis, 2) provide a high level overview of advances and challenges in EV isolation and characterization for translational studies, and 3) conclude with future perspectives on this evolving field.


Asunto(s)
Vesículas Extracelulares , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/terapia , Sistema Nervioso Central , Biomarcadores , Comunicación Celular
4.
J Extracell Vesicles ; 12(11): e12369, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37908159

RESUMEN

The molecular heterogeneity of extracellular vesicles (EVs) and the co-isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single-EV and particle (siEVP) protein and RNA assay (siEVP PRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The siEVP PRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ. By detecting EVPs at a single-particle resolution, the siEVP PRA outperformed the sensitivities of bulk-analysis benchmark assays for RNA and protein. To assess the specificity of RNA detection in complex biofluids, EVs from various glioma cell lines were processed with small RNA sequencing, whereby two mRNAs and two miRNAs associated with glioblastoma multiforme (GBM) were chosen for cross-validation. Despite the presence of single-EV-LP co-isolates in serum, the siEVP PRA detected GBM-associated vesicular RNA profiles in GBM patient siEVPs. The siEVP PRA effectively examines intravesicular, intervesicular, and interparticle heterogeneity with diagnostic promise.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , MicroARNs , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Lipopolisacáridos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero , Lipoproteínas , Glioblastoma/diagnóstico , Glioblastoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA