Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982660

RESUMEN

The treatment provided for breast cancer depends on the expression of hormone receptors, human epidermal growth factor receptor-2 (HER2), and cancer staging. Surgical intervention, along with chemotherapy or radiation therapy, is the mainstay of treatment. Currently, precision medicine has led to personalized treatment using reliable biomarkers for the heterogeneity of breast cancer. Recent studies have shown that epigenetic modifications contribute to tumorigenesis through alterations in the expression of tumor suppressor genes. Our aim was to investigate the role of epigenetic modifications in genes involved in breast cancer. A total of 486 patients from The Cancer Genome Atlas Pan-cancer BRCA project were enrolled in our study. Hierarchical agglomerative clustering analysis further divided the 31 candidate genes into 2 clusters according to the optimal number. Kaplan-Meier plots showed worse progression-free survival (PFS) in the high-risk group of gene cluster 1 (GC1). In addition, the high-risk group showed worse PFS in GC1 with lymph node invasion, which also presented a trend of better PFS when chemotherapy was combined with radiotherapy than when chemotherapy was administered alone. In conclusion, we developed a novel panel using hierarchical clustering that high-risk groups of GC1 may be promising predictive biomarkers in the clinical treatment of patients with breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Cromatina , Ensamble y Desensamble de Cromatina , Receptor ErbB-2/metabolismo , Quimioterapia Adyuvante , Estimación de Kaplan-Meier , Biomarcadores de Tumor/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
2.
Int J Med Sci ; 19(10): 1615-1627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185333

RESUMEN

In recent years, translational research and pharmacological targeting of epigenetic modifications have become the focus of personalized therapy for patients with pancreatic cancer. Preclinical and clinical trials targeting post-translational modifications have been evaluated as monotherapy or in combination with standard chemotherapy. In this study, we selected 43 genes from seven families of chromatin-modifying enzymes and investigated the influences of epigenetic modifications and their interactions on pancreatic ductal adenocarcinoma (PDAC) using hierarchical clustering analysis. Our analysis also evaluated their effects on treatment modalities and regimens of chemotherapy for PDAC. RNA-seq data for a total of 177 patients with pancreatic cancer, obtained from The Cancer Genome Atlas database, were analyzed. Our results suggested that high-risk patients of survival significant chromatin remodeling-associated gene cluster (gene cluster 2), composed of histone methyltransferases, histone acetyltransferases, histone deacetylases, histone demethylases, and 10-11 translocation family, demonstrated inferior progression-free survival and overall survival in patients with PDAC, especially in men. Our novel biomarker, survival significant chromatin remodeling-associated gene cluster, showed superior prediction performance compared with the conventional TNM system. Overall, these findings suggest that epigenetic modifications and interactions play an important role in the prognosis and therapeutic response of patients with PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Análisis por Conglomerados , Histona Acetiltransferasas/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Metiltransferasas/genética , Histonas/metabolismo , Humanos , Masculino , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Pronóstico , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673690

RESUMEN

Most patients with oral squamous cell cancer (OSCC) have a locally advanced stage at diagnosis. The treatment strategies are diverse, including surgery, radiotherapy and chemotherapy. Despite multimodality treatment, the response rate is unsatisfactory. DNA repair and genetic instability are highly associated with carcinogenesis and treatment outcomes in oral squamous cell cancer, affecting cell growth and proliferation. Therefore, focusing on DNA repair and genetic instability interactions could be a potential target for improving the outcomes of OSCC patients. DNA polymerase-ß (POLB) is an important enzyme in base excision repair and contributes to gene instability, leading to tumorigenesis and cancer metastasis. The aim of our study was to confirm POLB regulates the growth of OSCC cells through modulation of cell cycle and chromosomal instability. We analyzed a tissue array from 133 OSCC patients and discovered that low POLB expression was associated with advanced tumor stage and poor overall survival. In multivariate Cox proportional hazards regression analysis, low POLB expression and advanced lymph node status were significantly associated with poor survival. By performing in vitro studies on model cell lines, we demonstrated that POLB silencing regulated cell cycles, exacerbated mitotic abnormalities and enhanced cell proliferation. After POLB depletion, OSCC cells showed chromosomal instability and aneuploidy. Thus, POLB is an important maintainer of karyotypic stability in OSCC cells.


Asunto(s)
Aneuploidia , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/mortalidad , ADN Polimerasa beta/metabolismo , Neoplasias de la Boca/mortalidad , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/secundario , Proliferación Celular , ADN Polimerasa beta/antagonistas & inhibidores , ADN Polimerasa beta/genética , Femenino , Estudios de Seguimiento , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Mitosis , Neoplasias de la Boca/enzimología , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
4.
Exp Cell Res ; 363(1): 65-72, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29305962

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of cancer with aggressive behaviors (high recurrence and metastasis rate) and poor prognosis. Therefore, studying the determining factors that lead to malignant TNBCs is necessary to develop personalized therapy and improve survival rates. In this study, we first analyzed levels of chromodomain helicase DNA binding protein 4 (CHD4) in 60 TNBC patients by immunohistochemical staining. We then clarified the role of CHD4 in TNBC and non-TNBC cell lines. Our clinical data indicated that higher CHD4 expression is positively correlated with metastatic stage, tumor recurrence, and survival status. Consistent with the clinical analytical data, our in vitro data also indicated that high level of CHD4 is positively correlated with malignant behaviors in TNBC cells, such as cell motility and mortality. For further analyses, we found that E-cadherin, N-cadherin and fibronetin are involved in CHD4-mediated epithelial-mesenchymal transition (EMT). Silencing of CHD4 also increased drug sensitivity to cisplatin and PARP1 inhibitor, especially in TNBC cells. Altogether, our findings showed that CHD4 is not only a potential prognostic biomarker for TNBC patient survival, but is also a powerful candidate in the development of new anti-cancer agents in TNBC.


Asunto(s)
Cadherinas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Metástasis de la Neoplasia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
5.
Cell Mol Life Sci ; 75(2): 209-223, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28717873

RESUMEN

Histone proteins constitute the core component of the nucleosome, the basic unit of chromatin. Chemical modifications of histone proteins affect their interaction with genomic DNA, the accessibility of recognized proteins, and the recruitment of enzymatic complexes to activate or diminish specific transcriptional programs to modulate cellular response to extracellular stimuli or insults. Methylation of histone proteins was demonstrated 50 years ago; however, the biological significance of each methylated residue and the integration between these histone markers are still under intensive investigation. Methylation of histone H3 on lysine 27 (H3K27) is frequently found in the heterochromatin and conceives a repressive marker that is linked with gene silencing. The identification of enzymes that add or erase the methyl group of H3K27 provides novel insights as to how this histone marker is dynamically controlled under different circumstances. Here we summarize the methyltransferases and demethylases involved in the methylation of H3K27 and show the new evidence by which the H3K27 methylation can be established via an alternative mechanism. Finally, the progress of drug development targeting H3K27 methylation-modifying enzymes and their potential application in cancer therapy are discussed.


Asunto(s)
Silenciador del Gen , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Animales , Heterocromatina/genética , Histona Demetilasas/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación , Procesamiento Proteico-Postraduccional
6.
Int J Mol Sci ; 20(17)2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438571

RESUMEN

Neoadjuvant concurrent chemoradiotherapy (CCRT), followed by radical proctectomy, is the standard treatment for locally advanced rectal cancer. However, a poor response and therapeutic resistance continue to occur despite this treatment. In this study, we analyzed the microarray datasets (GSE68204) of rectal cancer from the Gene Expression Omnibus database, and identified CHD4 as one of the most significantly up-regulated genes among all subunits of the nucleosome remodeling and histone deacetylation (NuRD) complex, in non-responders to CCRT, among locally advanced rectal cancer (LARC) patients. We confirmed the predictive and prognostic significance of CHD4 expression in CCRT treatment, and its correlation with other clinicopathological features, such as tumor regression grade (TRG), therapeutic response, and patient survival. This was carried out by immunohistochemical studies on endoscopic biopsy tissues from 172 rectal cancer patients, receiving neoadjuvant concurrent chemoradiotherapy (CCRT). A high expression of CHD4 was significantly associated with pre-treatment tumor status (p < 0.001) and lymph node metastasis (p < 0.001), post-treatment tumor status (p < 0.001), and lymph node metastasis (p < 0.001), vascular invasion (p = 0.042), and tumor regression grade (p = 0.001). A high expression of CHD4 could also predict poor disease-specific survival and metastasis-free survival (log-rank test, p = 0.0373 and p < 0.0001, respectively). In multivariate Cox proportional-hazards regression analysis, CHD4 overexpression was an independent factor of poor prognosis for metastasis-free survival (HR, 4.575; 95% CI, 1.717-12.192; p = 0.002). By in vitro studies, based on cell line models, we also demonstrated that, the overexpression of CHD4 induced radio-resistance in microsatellite instability-high (MSI-H) colorectal cells (CRCs). On the contrary, the knockdown of CHD4 enhanced radiosensitivity in microsatellite stable (MSS) CRCs. Altogether, we have identified CHD4 as an important regulator of radio-resistance in both MSI-H and MSS CRC cell lines.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Neoplasias del Recto/metabolismo , Humanos , Inmunohistoquímica , Metástasis Linfática , Modelos de Riesgos Proporcionales , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/radioterapia , Análisis de Regresión
7.
Exp Cell Res ; 359(2): 458-465, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28842166

RESUMEN

The Mi-2/nucleosome remodeling and deacetylase (NuRD) complex play a role in silencing gene expression. CHD4, the core component of the NuRD complex, which cooperates with histone deacetylase in reducing tumor suppressor genes (TSGs). To dissect the mechanisms underlying cancer promotion, we clarify the role of CHD4 in cyclin-dependent kinase inhibitor protein p21. Here, our data indicates that CHD4 deficiency impairs the recruitments of HDAC1 to the p21 promoter. ~ 300bp proximal promoter region is responsible for CHD4-HDAC1 axis-mediated p21 transcriptional activity. For identifying the role of anti-cancer drug response, knockdown of p21 overcomes cisplatin and poly-(ADP-ribose) polymerase (PARP) inhibitor-mediated growth suppression in CHD4-depleted cells. Consistent with in vitro data, tissue of patients and bioinformatics approach also showed positive correlation between CHD4 and p21. Overall, our findings not only identify that CHD4 deficiency preferentially impairs cell survival via increasing the level of p21, but also establishes targeting CHD4 as a potential therapeutic implication in BRCA-proficient breast cancer treatment.


Asunto(s)
Autoantígenos/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Reparación del ADN , ADN/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 1/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Antineoplásicos/farmacología , Autoantígenos/metabolismo , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Cisplatino/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Bases de Datos de Proteínas , Femenino , Histona Desacetilasa 1/metabolismo , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas , Análisis por Matrices de Proteínas , Transducción de Señal
8.
Int J Mol Sci ; 19(11)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428588

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of approximately 8%. More than 80% of patients are diagnosed at an unresectable stage due to metastases or local extension. Immune system reactivation in patients by immunotherapy may eliminate tumor cells and is a new strategy for cancer treatment. The anti-CTLA-4 antibody ipilimumab and anti-PD-1 antibodies pembrolizumab and nivolumab have been approved for cancer therapy in different countries. However, the results of immunotherapy on PDAC are unsatisfactory. The low response rate may be due to poor immunogenicity with low tumor mutational burden in pancreatic cancer cells and desmoplasia that prevents the accumulation of immune cells in tumors. The immunosuppressive tumor microenvironment in PDAC is important in tumor progression and treatment resistance. Switching from an immune tolerance to immune activation status is crucial to overcome the inability of self-defense in cancer. Therefore, thoroughly elucidation of the roles of various immune-related factors, tumor microenvironment, and tumor cells in the development of PDAC may provide appropriate direction to target inflammatory pathway activation as a new therapeutic strategy for preventing and treating this cancer.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/metabolismo , Humanos , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/metabolismo
9.
Int J Mol Sci ; 17(5)2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27164092

RESUMEN

Mammalian cells evolve a delicate system, the DNA damage response (DDR) pathway, to monitor genomic integrity and to prevent the damage from both endogenous end exogenous insults. Emerging evidence suggests that aberrant DDR and deficient DNA repair are strongly associated with cancer and aging. Our understanding of the core program of DDR has made tremendous progress in the past two decades. However, the long list of the molecules involved in the DDR and DNA repair continues to grow and the roles of the new "dots" are under intensive investigation. Here, we review the connection between DDR and DNA repair and aging and discuss the potential mechanisms by which deficient DNA repair triggers systemic effects to promote physiological or pathological aging.


Asunto(s)
Envejecimiento/genética , Daño del ADN , Reparación del ADN , Animales , Senescencia Celular/genética , Humanos
10.
Int J Mol Sci ; 17(9)2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27589736

RESUMEN

Triple negative breast cancer (TNBC) displays higher risk of recurrence and distant metastasis. Due to absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), TNBC lacks clinically established targeted therapies. Therefore, understanding of the mechanism underlying the aggressive behaviors of TNBC is required for the design of individualized strategies and the elongation of overall survival duration. Here, we supported a positive correlation between ß1 integrin and malignant behaviors such as cell migration, invasion, and drug resistance. We found that silencing of ß1 integrin inhibited cell migration, invasion, and increased the sensitivity to anti-cancer drug. In contrast, activation of ß1 integrin increased cell migration, invasion, and decreased the sensitivity to anti-cancer drug. Furthermore, we found that silencing of ß1 integrin abolished Focal adhesion kinese (FAK) mediated cell survival. Overexpression of FAK could restore cisplatin-induced apoptosis in ß1 integrin-depleted cells. Consistent to in vitro data, ß1 integrin expression was also positively correlated with FAK (p = 0.031) in clinical tissue. More importantly, ß1 integrin expression was significantly correlated with patient outcome. In summary, our study indicated that ß1 integrin could regulate TNBC cells migration, invasion, drug sensitivity, and be a potential prognostic biomarker in TNBC patient survival.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Integrina beta1/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Integrina beta1/genética , Neoplasias de la Mama Triple Negativas/patología
11.
J Pers Med ; 14(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540967

RESUMEN

Gastrointestinal (GI) cancers are some of the main public health threats to the world. Even though surgery, chemotherapy, and targeted therapy are available for their treatments, these approaches provide limited success in reducing mortality, making the identification of additional therapeutic targets mandatory. Chromatin remodeling in cancer has long been studied and related therapeutics are widely used, although less is known about factors with prognostic and therapeutic potential in such areas as gastrointestinal cancers. Through applying systematic bioinformatic analysis, we determined that out of 31 chromatin remodeling factors in six gastrointestinal cancers, only PR/SET domain 1 (PRDM1) showed both expression alteration and prognosis prediction. Analyses on pathways, therapies, and mediators showed that cell cycle, bromodomain inhibitor IBET151, and BET protein BRD4 were, respectively involved in PRDM1-high stomach cancer, while cell line experiments validated that PRDM1 knockdown in human stomach cancer cell line SNU-1 decreased its proliferation, BRD4 expression, and responsiveness to IBET151; accordingly, these results indicate the contribution by PRDM1 in stomach cancer formation and its association with BRD4 modulation as well as BET inhibitor treatment.

12.
Am J Cancer Res ; 14(6): 3171-3185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005677

RESUMEN

Early detection of cancer recurrence using specific biomarkers remains a clinically unmet need, although methodologies for monitoring tumor markers, cell-free DNA, and circulating tumor cells have been established for decades. Tumor recurrence develops in metastatic or dormant cancer cells under continuous immune surveillance. Alterations in the population and function of immune cells may contribute to cancer recurrence. Here, we utilized an animal model to imitate breast tumor recurrence after surgical resection and investigated the abundance and gene expression profiles of immune cells using NanoString analysis. Bioinformatic analysis of a published single-cell RNA sequencing database of myeloid-derived suppressor cells (MDSCs) was performed to identify common targets between the two studies. Identified biomarkers were validated using human peripheral blood mononuclear cell (PBMC) datasets. The inhibitory effect of MDSCs on T-cell proliferation was assessed in vitro. Our data demonstrated that the number of MDSCs significantly increased during recurrence. Comparison of our NanoString data with a single-cell RNA sequencing dataset of MDSCs in another spontaneous breast cancer model identified colony-stimulating factor 3 receptor (Csf3r)-positive MDSCs as a potential marker for predicting tumor relapse. We validated our findings using two previously published PBMC databases of patients with breast cancer with or without recurrence and confirmed the elevated MDSC gene signature and CSF3R expression in patients with tumor recurrence. 35 patients with breast cancer were also included in our study, that patients with higher levels of CSF3R had worse survival. In vitro experiments demonstrated that Csf3r + MDSCs exhibited enhanced reactive oxygen species (ROS) levels and robust T-cell suppression ability. We conclude that an increase in CSF3R + MDSCs is a potential biomarker for early detection of tumor recurrence in patients with breast cancer.

13.
In Vivo ; 38(3): 1143-1151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688621

RESUMEN

BACKGROUND/AIM: Following the National Comprehensive Cancer Network guidelines, radiotherapy is administered after breast-conserving surgery (BCS) in patients with more than four positive lymph nodes. Four positive lymph nodes are typically considered an indicator to assess disease spread and patient prognosis. However, the subjective counting of positive axillary lymph nodes underscores the need for biomarkers to improve diagnostic precision and reduce the risk of unnecessary treatments. Loss of E-cadherin expression is associated with cancer metastasis, but its potential as a predictive marker for cancer treatment remains uncertain. This study aimed to investigate the validity of E-cadherin as a reference for adjuvant radiotherapy in breast cancer patients with positive lymph nodes post-mastectomy. MATERIALS AND METHODS: Immunohistochemistry was performed on 60 clinical tissue specimens to assess these implications. RESULTS: Although no significant result was found in a single E-cadherin subgroup (low, medium, and high subgroups according to the X-tile algorithm), the proposed multivariate model, including the E-cadherin category, breast cancer subtype, and tumor size, yielded satisfactory recurrence risk estimation results for patients undergoing BCS. Patients with a low E-cadherin category, triple-negative breast cancers, and tumor size over 5 cm could have an increased risk of recurrence. CONCLUSION: Our study proposed a multivariate model that serves as a candidate prognostic factor for recurrence-free survival in patients undergoing BCS and radiotherapy. Utilizing this model for patient stratification in high-risk diseases and as a standard for assessing postoperative intensified therapy can potentially improve patient outcomes.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Cadherinas , Mastectomía Segmentaria , Recurrencia Local de Neoplasia , Humanos , Femenino , Cadherinas/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/metabolismo , Persona de Mediana Edad , Pronóstico , Anciano , Adulto , Inmunohistoquímica , Metástasis Linfática , Estadificación de Neoplasias
14.
Life Sci ; 353: 122914, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004275

RESUMEN

AIMS: Colorectal cancer (CRC) remains a major global health issue, with metastatic cases presenting poor prognosis despite advances in chemotherapy and targeted therapy. Irinotecan, a key drug for advanced CRC treatment, faces challenges owing to the development of resistance. This study aimed to understand the mechanisms underlying irinotecan resistance in colorectal cancer. MAIN METHODS: We created a cell line resistant to irinotecan using HT29 cells. These resistant cells were utilized to investigate the role of the CDK7-MDK axis. We employed bulk RNA sequencing, conducted in vivo experiments with mice, and analyzed patient tissues to examine the effects of the CDK7-MDK axis on the cellular response to irinotecan. KEY FINDINGS: Our findings revealed that HT29 cells resistant to irinotecan, a crucial colorectal cancer medication, exhibited significant phenotypic and molecular alterations compared to their parental counterparts, including elevated stem cell characteristics and increased levels of cytokines and drug resistance proteins. Notably, CDK7 expression was substantially higher in these resistant cells, and targeting CDK7 effectively decreased their survival and tumor growth, enhancing irinotecan sensitivity. RNA-seq analysis indicated that suppression of CDK7 in irinotecan-resistant HT29 cells significantly reduced Midkine (MDK) expression. Decreased CDK7 and MDK levels, achieved through siRNA and the CDK7 inhibitor THZ1, enhanced the sensitivity of resistant HT29 cells to irinotecan. SIGNIFICANCE: Our study sheds light on how CDK7 and MDK influence irinotecan resistance in colorectal and highlights the potential of MDK-targeted therapies. We hypothesized that irinotecan sensitivity and overall treatment efficacy would improve by inhibiting MDK. This finding encourages a careful yet proactive investigation of MDK as a therapeutic target to enhance outcomes in colorectal cancer patients.


Asunto(s)
Neoplasias Colorrectales , Quinasa Activadora de Quinasas Ciclina-Dependientes , Quinasas Ciclina-Dependientes , Resistencia a Antineoplásicos , Irinotecán , Irinotecán/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Humanos , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Ratones , Células HT29 , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos BALB C , Femenino , Proliferación Celular/efectos de los fármacos
15.
Cancer Genomics Proteomics ; 21(5): 523-532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39191496

RESUMEN

BACKGROUND/AIM: Patients diagnosed with advanced metastatic colorectal cancer (CRC) confront a bleak prognosis characterized by low survival rates. Anoikis, the programmed apoptosis resistance exhibited by metastatic cancer cells, is a crucial factor in this scenario. MATERIALS AND METHODS: We employed bulk flow cytometry and RT-qPCR assays, conducted in vivo experiments with mice and zebrafish, and analyzed patient tissues to examine the effects of the B cell-specific Moloney murine leukemia virus insertion site 1 (Bmi1)-midkine (MDK) axis on the cellular response to anoikis. Bmi1 is pivotal in tumorigenesis. This study elucidated the involvement of Bmi1 in conferring anoikis resistance in CRC and explored its downstream targets associated with metastasis. RESULTS: Elevated levels of Bmi1 expression correlated with distant metastasis in CRC. Suppression of Bmi1 significantly diminished the metastatic potential of CRC cells. Inhibition of Bmi1 led to an increase in the proportion of apoptotic SW620 cells detached from the matrix. This effect was further enhanced by the addition of irinotecan, a topoisomerase I inhibitor. Furthermore, Bmi1 was found to synergize with MDK in modulating CRC viability, with consistent expression patterns observed in in vivo models and clinical tissue specimens. In summary, Bmi1 acted as a regulator of CRC metastatic capability by conferring anoikis resistance. Additionally, it collaborated with MDK to facilitate invasion and distant metastasis. CONCLUSION: Targeting Bmi1 may offer a promising adjunctive therapeutic strategy when administering traditional chemotherapy regimens to patients with advanced CRC.


Asunto(s)
Anoicis , Neoplasias Colorrectales , Metástasis de la Neoplasia , Complejo Represivo Polycomb 1 , Adulto , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Anoicis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Pez Cebra
16.
J Biol Chem ; 287(9): 6764-72, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22219182

RESUMEN

To ensure genome stability, cells have evolved a robust defense mechanism to detect, signal, and repair damaged DNA that is generated by exogenous stressors such as ionizing radiation, endogenous stressors such as free radicals, or normal physiological processes such as DNA replication. Homologous recombination (HR) repair is a critical pathway of repairing DNA double strand breaks, and it plays an essential role in maintaining genomic integrity. Previous studies have shown that BRIT1, also known as MCPH1, is a key regulator of HR repair. Here, we report that chromodomain helicase DNA-binding protein 4 (CHD4) is a novel BRIT1 binding partner that regulates the HR repair process. The BRCA1 C-terminal domains of BRIT1 are required for its interaction with CHD4. Depletion of CHD4 and overexpression of the ATPase-dead form of CHD4 impairs the recruitment of BRIT1 to the DNA damage lesions. As a functional consequence, CHD4 deficiency sensitizes cells to double strand break-inducing agents, reduces the recruitment of HR repair factor BRCA1, and impairs HR repair efficiency. We further demonstrate that CHD4-depleted cells are more sensitive to poly(ADP-ribose) polymerase inhibitor treatment. In response to DNA damage induced by poly(ADP-ribose) polymerase inhibitors, CHD4 deficiency impairs the recruitment of DNA repair proteins BRIT1, BRCA1, and replication protein A at early steps of HR repair. Taken together, our findings identify an important role of CHD4 in controlling HR repair to maintain genome stability and establish the potential therapeutic implications of targeting CHD4 deficiency in tumors.


Asunto(s)
Autoantígenos/metabolismo , Reparación del ADN/fisiología , Recombinación Homóloga/fisiología , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Autoantígenos/genética , Proteína BRCA1/metabolismo , Mama/citología , Neoplasias de la Mama , Proteínas de Ciclo Celular , Línea Celular , Cromatina/fisiología , Proteínas del Citoesqueleto , Daño del ADN/fisiología , Femenino , Recombinación Homóloga/efectos de los fármacos , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/deficiencia , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteínas del Tejido Nervioso/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Interferente Pequeño/farmacología , Proteína de Replicación A/metabolismo
17.
J Cell Physiol ; 228(2): 341-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22718198

RESUMEN

Up-regulation of cyclooxygenase-2 (COX-2) is frequently found in human cancers and is significantly associated with tumor metastasis. Our previous results demonstrate that COX-2 and its metabolite prostaglandin E2 (PGE2) stimulate the expression of CCR7 chemokine receptor via EP2/EP4 receptors to promote lymphatic invasion in breast cancer cells. In this study, we address the underlying mechanism of COX-2/PGE2-induced CCR7 expression. We find that COX-2/PGE2 increase CCR7 expression via the AKT signaling pathway in breast cancer cells. Promoter deletion and mutation assays identify the Sp1 site located at the -60/-57 region of CCR7 gene promoter is critical for stimulation. Chromatin immunoprecipitation (ChIP) assay confirms that in vivo binding of Sp1 to human CCR7 promoter is increased by COX-2 and PGE2. Knockdown of Sp1 by shRNA reduces the induction of CCR7 by PGE2. We demonstrate for the first time that AKT may directly phosphorylate Sp1 at S42, T679, and S698. Phosphorylation-mimic Sp1 protein harboring S42D, T679D, and S698D mutation strongly activates CCR7 expression. In contrast, change of these three residues to alanine completely blocks the induction of CCR7 by PGE2. Pathological investigation demonstrates that CCR7 expression is strongly associated with phospho-AKT and Sp1 in 120 breast cancer tissues. Collectively, our results demonstrate that COX-2 up-regulates CCR7 expression via AKT-mediated phosphorylation and activation of Sp1 and this pathway is highly activated in metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma/metabolismo , Ciclooxigenasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CCR7/metabolismo , Factor de Transcripción Sp1/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Células MCF-7 , Mutación , Fosforilación , Regiones Promotoras Genéticas , Receptores CCR7/genética , Transducción de Señal , Factor de Transcripción Sp1/genética , Regulación hacia Arriba
18.
Cancer Genomics Proteomics ; 20(6): 582-591, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37889057

RESUMEN

BACKGROUND/AIM: The role of postoperative radiotherapy (RT) combined with chemotherapy (CT) for lymph node-positive (LN+) triple-negative breast cancer (TNBC) remains controversial. SUV39H1-mediated epigenetic regulation is associated with cancer cell migration, invasion, metastasis, and treatment resistance. This study aims to identify the role of SUV39H1 in TNBCs. MATERIALS AND METHODS: Overall, 498 TNBCs with SUV39H1 RNA-seq profiles were retrieved from TCGA-BRCA and analyzed; the X-tile algorithm was used to stratify the population into low, intermediate, and high SUV39H1. Furthermore, we performed an in vitro clonogenic cell survival assay using the MDA-MB-231 cell line to assess the effects of SUV39H1 on cellular responses. RESULTS: The results showed that SUV39H1 was significantly higher in TNBC than normal tissue and luminal subtype breast cancer. Notably, SUV39H1 is significantly expressed in the basal-like 1 (BL1) and immunomodulatory (IM) subgroups, compared to other subtypes. Compared to patients with a low or medium expression of SUV39H1, omitting RT only worsens disease-free survival (DFS) in those with high SUV39H1 expression. The experimental results showed SUV39H1 was suppressed by si-SUV39H1, and SUV39H1 knockdown in MDA-MB-231-IV2-1 cells enhanced the cellular toxicity of doxorubicin and paclitaxel. CONCLUSION: Targeting SUV39H1 may provide a potential guiding indication of omitting RT to avoid over-treatment and chemosensitivity for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/radioterapia , Línea Celular Tumoral , Epigénesis Genética , Paclitaxel/uso terapéutico , Ganglios Linfáticos/patología , Metiltransferasas/metabolismo , Metiltransferasas/uso terapéutico , Proteínas Represoras/metabolismo
19.
Biomed Pharmacother ; 163: 114732, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37254289

RESUMEN

Triple-negative breast cancer (TNBC) is characterized by the loss of expression of several biomarkers, which limits treatment strategies for the disease. In recent years, immunotherapy has shown promising results in the treatment of various tumors. Emerging evidence demonstrated that TNBC is an immune-activated cancer, suggesting that immunotherapy could be a feasible treatment option for TNBC. Cytokine-induced killer (CIK) cell therapy is considered as a potential treatment for cancer treatment. However, it is still not approved as a standard treatment in the clinical setting. Our previous study demonstrated that focal adhesion kinase (FAK) plays important role in regulating the sensitivity of TNBC cells to CIK cells. In this study, we further verify the role of FAK in regulating the immune response in vivo. Our in vitro study indicated that knockdown of FAK in TNBC cells or treat with the FAK inhibitor followed by co-culture with CIK cells induced more cell death than CIK cells treatment only. RNA-seq analysis indicated that suppression of FAK could affect several immune-related gene expressions in TNBC cells that affects the immune response in the tumor microenvironment of TNBC cells. The combination of FAK inhibitor and CIK cells significantly suppressed tumor growth than the treatment of FAK inhibitor or CIK cells alone in vivo. Our findings provide new insights into the cytotoxic effect of CIK cell therapy in TNBC treatment and indicate that the combination of CIK cell therapy with FAK inhibitors may be an alternative therapeutic strategy for patients with TNBC.


Asunto(s)
Antineoplásicos , Células Asesinas Inducidas por Citocinas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Antineoplásicos/uso terapéutico , Inmunoterapia/métodos , Inmunoterapia Adoptiva , Microambiente Tumoral
20.
Exp Mol Med ; 55(5): 926-938, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37121970

RESUMEN

Personalized genetic profiling has focused on improving treatment efficacy and predicting risk stratification by identifying mutated genes and selecting targeted agents according to genetic testing. Therefore, we evaluated the role of genetic profiling and tumor mutation burden (TMB) using next-generation sequencing in patients with head and neck squamous cell carcinoma (HNSC). The relapse mutation signature (RMS) and chromatin remodeling mutation signature (CRMS) were explored to predict the risk of relapse in patients with HNSC treated with concurrent chemoradiotherapy (CCRT) with platinum-based chemotherapy. Patients in the high RMS and CRMS groups showed significantly shorter relapse-free survival than those in the low RMS and CRMS groups, respectively (p < 0.001 and p = 0.006). Multivariate Cox regression analysis showed that extranodal extension, CCRT response, and three somatic mutation profiles (TMB, RMS, and CRMS) were independent risk predictors for HNSC relapse. The predictive nomogram showed satisfactory performance in predicting relapse-free survival in patients with HNSC treated with CCRT.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Quimioradioterapia , Biomarcadores de Tumor/genética , Mutación , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA