Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Immunol ; 211(6): 964-980, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37578390

RESUMEN

Teleost B cells are primitive lymphocytes with both innate and adaptive immune functions. However, the heterogeneity and differentiation trajectory of teleost B cells remain largely unknown. In this study, the landscape of grass carp IgM+ (gcIgM+) B cells was revealed by single-cell RNA sequencing. The results showed that gcIgM+ B cells mainly comprise six populations: (im)mature B cells, innate B cells, proliferating B cells, plasma cells, CD22+ cells, and CD34+ cells, among which innate B cells and proliferating B cells were uncommon B cell subsets with, to our knowledge, new characteristics. Remarkably, three functional IgMs were discovered in grass carp, and a significant percentage of gcIgM+ B cells, especially plasma cells, expressed multiple Igµ genes (Igµ1, Igµ2, and/or Igµ3). More importantly, through single-cell sorting combined with Sanger sequencing, we found that distinct VHDJH recombination patterns of Igµ genes were present in single IgM+ B cells, indicating that individual teleost B cells might produce multiple Abs by coexpressing rearranged IgM subclass genes. Moreover, the percentage of IgM1highIgM2highIgM3high plasma cells increased significantly after bacterial infection, suggesting that individual plasma cells might tend to produce multiple IgMs to resist the infection in teleost fish. In summary, to our knowledge, this study not only helps to uncover the unique heterogeneity of B cells in early vertebrates but also provided significant new evidence supporting the recently proposed "one cell-multiple Abs" paradigm, challenging the classical rule of "one cell-one Ab."


Asunto(s)
Infecciones Bacterianas , Carpas , Enfermedades de los Peces , Animales , Inmunidad Innata/genética , Proteínas de Peces/genética , Inmunoglobulina M , Homeostasis
2.
Fish Shellfish Immunol ; 150: 109649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797336

RESUMEN

In mammals, CD4 is found to be expressed on T cells and innate immune cells, however, teleost cells bearing CD4 have not been well identified and characterized. In this study, we identified two different CD4-1+ cell subsets in grass carp (Ctenopharyngodon idella): CD4-1+ lymphocytes (Lym) and CD4-1+ myeloid cells (Mye), both of which had the highest proportions in the head kidney. The mRNA expression analysis showed that CD4-1, CD4-2, TCRß, CD3γ/δ, and LCK1 are highly expressed in CD4-1+ Lym and also expressed in CD4-1+ Mye. Furthermore, we found that CD4-1+ Lym have a Lym morphology and highly express T-cell cytokines, suggesting that they are CD4+ T cells equivalent to mammalian Th cells. On the other hand, CD4-1+ Mye were found to have a morphology of macrophage and highly express macrophage marker gene MCSFR, indicating that they are macrophages. In addition, functional analysis revealed that CD4-1+ Mye possess phagocytic ability and great antigen-processing ability. Taken together, our study sheds further light on the composition and function of CD4+ cells in teleost fish.


Asunto(s)
Carpas , Proteínas de Peces , Animales , Carpas/inmunología , Carpas/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos CD4/genética , Antígenos CD4/inmunología , Antígenos CD4/metabolismo , Riñón Cefálico/inmunología , Riñón Cefálico/citología , Células Mieloides/inmunología , Inmunidad Innata/genética
3.
Chaos ; 33(1): 011101, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36725633

RESUMEN

Critical physical systems with large numbers of molecules can show universal and scaling behaviors. It is of interest to know whether human societies with large numbers of people can show the same behaviors. Here, we use network theory to analyze Chinese history in periods 209 BCE-23 CE and 515-618 CE) related to the Western Han-Xin Dynasty and the late Northern Wei-Sui Dynasty, respectively. Two persons are connected when they appear in the same historical event. We find that the historical networks from two periods separated about 500 years have interesting universal and scaling behaviors, and they are small-world networks; their average cluster coefficients as a function of degree are similar to the network of movie stars. In the historical networks, the persons with larger degrees prefer to connect with persons with a small degree; however, in the network of movie stars, the persons with larger degrees prefer to connect with persons with large degrees. We also find an interesting similar mechanism for the decline or collapse of historical Chinese dynasties. The collapses of the Xin dynasty (9-23 CE) and the Sui dynasty (581-618 CE) were initiated from their arrogant attitude toward neighboring states.

4.
Clin Immunol ; 244: 109093, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35944881

RESUMEN

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated, which results in a cytokine storm at the late stage of COVID-19. Autophagy regulation is involved in the infection and replication of SARS-CoV-2 at the early stage and the inhibition of NLRP3 inflammasome-mediated lung inflammation at the late stage of COVID-19. Here, we discuss the autophagy regulation at different stages of COVID-19. Specifically, we highlight the therapeutic potential of autophagy activators in COVID-19 by inhibiting the NLRP3 inflammasome, thereby avoiding the cytokine storm. We hope this review provides enlightenment for the use of autophagy activators targeting the inhibition of the NLRP3 inflammasome, specifically the combinational therapy of autophagy modulators with the inhibitors of the NLRP3 inflammasome, antiviral drugs, or anti-inflammatory drugs in the fight against COVID-19.


Asunto(s)
COVID-19 , Neumonía , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacología , Autofagia , Síndrome de Liberación de Citoquinas , Humanos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , SARS-CoV-2
7.
J Cell Sci ; 126(Pt 24): 5670-80, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24127566

RESUMEN

Podosomes are actin-based membrane protrusions that facilitate extracellular matrix degradation and motility of invasive cells. Podosomes can self-organize into large rosette-like structures in Src-transformed fibroblasts, osteoclasts and some highly invasive cancer cells. However, the mechanism of this assembly remains obscure. In this study, we show that the suppression of Jun N-terminal kinase (JNK) by the JNK inhibitor SP600125 or short-hairpin RNA inhibited podosome rosette formation in SrcY527F-transformed NIH3T3 fibroblasts. In addition, SrcY527F was less able to induce podosome rosettes in JNK1-null or JNK2-null mouse embryo fibroblasts than in wild-type counterparts. The kinase activity of JNK was essential for promoting podosome rosette formation but not for its localization to podosome rosettes. Moesin, a member of the ERM (ezrin, radixin and moesin) protein family, was identified as a substrate of JNK. We show that the phosphorylation of moesin at Thr558 by JNK was important for podosome rosette formation in SrcY527F-transformed NIH3T3 fibroblasts. Taken together, our results unveil a novel role of JNK in podosome rosette formation through the phosphorylation of moesin.


Asunto(s)
Fibroblastos/enzimología , Proteínas de Microfilamentos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Procesamiento Proteico-Postraduccional , Familia-src Quinasas/metabolismo , Animales , Estructuras de la Membrana Celular/enzimología , Citoplasma/enzimología , Fibroblastos/ultraestructura , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Paxillin/metabolismo , Fosforilación , Transporte de Proteínas
8.
J Cell Sci ; 126(Pt 2): 657-66, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23178938

RESUMEN

Podosomes are actin-enriched membrane protrusions that play important roles in extracellular matrix degradation and invasive cell motility. Podosomes undergo self-assembly into large rosette-like structures in Src-transformed fibroblasts, osteoclasts and certain highly invasive cancer cells. Several protein tyrosine kinases have been shown to be important for the formation of podosome rosettes, but little is known regarding the role of protein tyrosine phosphatases in this process. We found that knockdown of the Src homolog domain-containing phosphatase 2 (SHP2) significantly increased podosome rosette formation in Src-transformed fibroblasts. By contrast, SHP2 overexpression suppressed podosome rosette formation in these cells. The phosphatase activity of SHP2 was essential for the suppression of podosome rosette formation. SHP2 selectively suppressed the tyrosine phosphorylation of Tks5, a scaffolding protein required for podosome formation. The inhibitory effect of SHP2 on podosome rosette formation was associated with the increased activation of Rho-associated kinase (ROCK) and the enhanced polymerization of vimentin filaments. A higher content of polymerized vimentin filaments was correlated with a lower content of podosome rosettes. Taken together, our findings indicate that SHP2 serves as a negative regulator of podosome rosette formation through the dephosphorylation of Tks5 and the activation of ROCK-mediated polymerization of vimentin in Src-transformed fibroblasts.


Asunto(s)
Fibroblastos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Familia-src Quinasas/metabolismo , Animales , Fibroblastos/citología , Fibroblastos/enzimología , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética
9.
Heliyon ; 10(7): e29055, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38576565

RESUMEN

Background: Anaplastic thyroid cancer (ATC), a rare and aggressive malignancy with a poor prognosis, has shown promise with the approved dabrafenib/trametinib combination for BRAFV600E mutation. Co-occurring PI3KCA mutations, identified as negative prognostic factors in lung cancer with BRAFV600E mutation, emphasize the need to target both pathways. Exploring trametinib and alpelisib combination becomes crucial for ATC. Methods: A patient-derived xenograft (PDX) and primary cell line were obtained from an ATC patient with BRAF and PI3KCA co-mutation. Individual testing of targeted therapies against BRAF, MEK, and PI3KCA was followed by a combination treatment. Synergistic effects were evaluated using the combination index. Immunoblotting assessed the efficacy, with validation performed using a PDX model. Results: In this study, the ATC0802 cell line and PDX were established from a refractory ATC patient. NGS revealed BRAF and PI3KCA co-mutations pre- and post-dabrafenib/trametinib treatment. Trametinib/alpelisib combination showed synergy, suppressing both pERK and pAKT levels, unlike monotherapies or BRAF knockdown. The combination induced apoptosis and, in the PDX model, demonstrated superior tumor growth inhibition compared to monotherapies. Conclusions: The combination of trametinib and alpelisib showed promise as a strategy for treating ATC with co-mutations in BRAF and PI3KCA, both in vitro and in vivo. This combination offers insights into overcoming resistance to BRAF-targeted treatments in ATC with mutations in BRAF and PI3KCA.

10.
Cancer Gene Ther ; 31(2): 322-333, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38057358

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) is a subtype of CCA and has a high mortality rate and a relatively poor prognosis. However, studies focusing on increased cell motility and loss of epithelial integrity during iCCA progression remain relatively scarce. We collected seven fresh tumor samples from four patients to perform RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) to determine the transcriptome profile and chromatin accessibility of iCCA. The increased expression of cell cycle regulators, including PLK1 and its substrate MISP, was identified. Ninety-one iCCA patients were used to validate the clinical significance of PLK1 and MISP. The upregulation of PLK1 and MISP was determined in iCCA tissues. Increased expression of PLK1 and MISP was significantly correlated with tumor number, N stage, and lymphatic invasion in an iCCA cohort. Knockdown of PLK1 or MISP reduced trans-lymphatic endothelial migration and wound healing and affected focal adhesions in vitro. In cell‒cell junctions, MISP localized to adherens junctions and suppressed E-cadherin dimerization. PLK1 disrupted adherens junctions in a myosin-dependent manner. Furthermore, PLK1 and MISP promoted cell proliferation in vitro and tumorigenesis in vivo. In iCCA, PLK1 and MISP promote aggressiveness by increasing lymphatic invasion, tumor growth, and motility through the repression of E-cadherin adherens junctions.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Uniones Adherentes/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo
11.
Front Immunol ; 14: 1128138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891317

RESUMEN

Antimicrobial peptides are important components of the host innate immune system, forming the first line of defense against infectious microorganisms. Among them, liver-expressed antimicrobial peptides (LEAPs) are a family of antimicrobial peptides that widely exist in vertebrates. LEAPs include two types, named LEAP-1 and LEAP-2, and many teleost fish have two or more LEAP-2s. In this study, LEAP-2C from rainbow trout and grass carp were discovered, both of which are composed of 3 exons and 2 introns. The antibacterial functions of the multiple LEAPs were systematically compared in rainbow trout and grass carp. The gene expression pattern revealed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C were differentially expressed in various tissues/organs, mainly in liver. After bacterial infection, the expression levels of LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C in the liver and gut of rainbow trout and grass carp increased to varying degrees. Moreover, the antibacterial assay and bacterial membrane permeability assay showed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and LEAP-2C all have antibacterial activities against a variety of Gram-positive and Gram-negative bacteria with varying levels through membrane rupture. Furthermore, cell transfection assay showed that only rainbow trout LEAP-1, but not LEAP-2, can lead to the internalization of ferroportin, the only iron exporter on cell surface, indicating that only LEAP-1 possess iron metabolism regulation activity in teleost fish. Taken together, this study systematically compared the antibacterial function of LEAPs in teleost fish and the results suggest that multiple LEAPs can enhance the immunity of teleost fish through different expression patterns and different antibacterial activities to various bacteria.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Animales , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias Gramnegativas , Bacterias Grampositivas , Hígado/metabolismo , Hierro/metabolismo
12.
Biol Trace Elem Res ; 201(12): 5540-5545, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36892689

RESUMEN

Hand-foot skin reaction (HFSR) is a common skin-related adverse event induced by multikinase inhibitors targeting both platelet-derived growth factor receptor and vascular endothelial growth factor receptor, possibly due to inadequate repair following frictional trauma. Zinc is a trace element and essential nutrient in humans that plays critical roles in the development and differentiation of skin cells. Zinc transporters (Zrt- and Irt-like proteins and Zn transporters) and metallothioneins are involved in zinc efflux, uptake, and homeostasis and have been reported to be involved in skin differentiation. The underlying mechanism of HFSR remains unclear, and the association between HFSR and zinc has not been previously studied. However, some case reports and case series provide potential evidence to suggest that zinc deficiency may be involved in HFSR development and zinc supplementation may relieve HFSR symptoms. However, no large-scale clinical studies have been conducted to examine this role. Therefore, this review summarizes the evidence supporting a possible link between HFSR development and zinc and proposes potential mechanisms underlying this association based on current evidence.


Asunto(s)
Desnutrición , Enfermedades de la Piel , Zinc , Humanos , Inhibidores de Proteínas Quinasas/efectos adversos , Piel/patología , Factor A de Crecimiento Endotelial Vascular , Zinc/deficiencia , Enfermedades de la Piel/inducido químicamente
13.
Biomed Pharmacother ; 166: 115389, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37659202

RESUMEN

Patients with advanced biliary tract cancer (BTC) have a poor prognosis, and novel treatments are needed. Gemcitabine, the standard of care for BTC, induces DNA damage; however, the ability of cancer cells to repair DNA dampens its effects. To improve the efficacy of gemcitabine, we combined it with MK1775, a Wee1 inhibitor that prevents activation of the G2/M checkpoint. BTC cell lines were treated with gemcitabine only or in combination with MK1775 to determine the therapeutic potential of BTC. Gemcitabine inhibited the growth and induced the apoptosis of four BTC cell lines to a greater extent when added with MK1775 than when added alone. The effects of the combination treatment were observed in both p53 wild-type and p53 mutant cell lines and were unaffected by knockdown of wild-type p53. The combination treatment increased the percentage of apoptotic cells and decreased the percentage of cells synthesizing DNA, suggesting that it caused DNA-damaged cells to accumulate and possibly die in S phase. It did not induce apoptosis when cells were arrested in mitosis using nocodazole. In a xenograft mouse model, gemcitabine plus MK1775 (but not either alone) inhibited the growth of tumors generated from inoculated BTC cells. Our results show that MK1775 highly enhances gemcitabine cytotoxicity in BTC regardless of p53 status. We suggest that the combination treatment elicits a DNA damage response and consequent apoptosis. Our preclinical study provides a basis for future clinical trials of gemcitabine plus MK1775 in patients with BTC.


Asunto(s)
Neoplasias del Sistema Biliar , Gemcitabina , Animales , Humanos , Ratones , Apoptosis , Neoplasias del Sistema Biliar/tratamiento farmacológico , Modelos Animales de Enfermedad , Proteína p53 Supresora de Tumor/genética
14.
Int J Biol Sci ; 19(9): 2772-2786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324940

RESUMEN

Cholangiocarcinoma (CCA) exhibits aggressive biological behavior and a poor prognosis. Gemcitabine (GEM)-based chemotherapy is the first-line chemotherapy for advanced CCA but has a response rate of only 20-30%. Therefore, investigating treatments to overcome GEM resistance in advanced CCA is crucial. Among mucin (MUC) family members, MUC4 showed the greatest increase in the resistant versus parental sublines. MUC4 was upregulated in whole-cell lysates and conditioned media from gemcitabine-resistant (GR) CCA sublines. MUC4 mediated GEM resistance by activating AKT signaling in GR CCA cells. The MUC4-AKT axis induced BAX S184 phosphorylation to inhibit apoptosis and downregulated GEM transporter human equilibrative nucleoside transporter 1 (hENT1) expression. The combination of AKT inhibitors and GEM or afatinib overcame GEM resistance in CCA. In vivo, capivasertib (an AKT inhibitor) increased GEM sensitivity in GR cells. MUC4 promoted EGFR and HER2 activation to mediate GEM resistance. Finally, MUC4 expression in patient plasma correlated with MUC4 expression. Paraffin-embedded specimens from non-responders expressed significantly more MUC4 than did those from responders, and this upregulation was associated with poor progression-free survival and overall survival. In GR CCA, high MUC4 expression promotes sustained EGFR/HER2 signaling and AKT activation. The combination of AKT inhibitors with GEM or afatinib might overcome GEM resistance.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias Pancreáticas , Humanos , Afatinib/uso terapéutico , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos/genética , Receptores ErbB , Gemcitabina , Mucina 4/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-akt
15.
Ageing Res Rev ; 91: 102078, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37758006

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.


Asunto(s)
Enfermedades Neurodegenerativas , Ribosa , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Daño del ADN , Reparación del ADN
16.
Eur J Cancer ; 195: 113286, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37968194

RESUMEN

To the editor: Hand-foot skin reaction (HFSR), characterized by skin abnormalities on palmoplantar surfaces, has an overall incidence of about 35% upon vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs) treatment.1 Zinc, which plays a role in maintaining skin health, may be implicated in the pathogenesis of HFSR.2 Zinc deficiency has been shown to associate with dermatological toxicities of epidermal growth factor receptor (EGFR)-TKI.3, 4 Regorafenib, an oral multi-kinase inhibitor targeting VEGFR 1-3, PDGFR, cKIT, BRAF, and RET1, is approved for the treatment of metastatic colorectal cancer (mCRC) but commonly causes HFSR.5 This phase II randomized trial aimed to investigate whether zinc supplementation can reduce the severity of HFSR induced by regorafenib within the first 8 weeks of treatment (NCT03898102).


Asunto(s)
Factor A de Crecimiento Endotelial Vascular , Zinc , Humanos , Incidencia , Compuestos de Fenilurea/efectos adversos , Inhibidores de Proteínas Quinasas/efectos adversos , Suplementos Dietéticos
17.
Phytomedicine ; 117: 154916, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37327643

RESUMEN

BACKGROUND: With population aging, the incidence of aging-related Alzheimer's disease (AD) is increasing, accompanied by decreased autophagy activity. At present, Caenorhabditis elegans (C. elegans) is widely employed to evaluate autophagy and in research on aging and aging-related diseases in vivo. To discover autophagy activators from natural medicines and investigate their therapeutic potential in antiaging and anti-AD effects, multiple C. elegans models related to autophagy, aging, and AD were used. METHOD: In this study, we employed the DA2123 and BC12921 strains to discover potential autophagy inducers using a self-established natural medicine library. The antiaging effect was evaluated by determining the lifespan, motor ability, pumping rate, lipofuscin accumulation of worms, and resistance ability of worms under various stresses. In addition, the anti-AD effect was examined by detecting the paralysis rate, food-sensing behavior, and amyloid-ß and Tau pathology in C. elegans. Moreover, RNAi technology was used to knock down the genes related to autophagy induction. RESULTS: We discovered that Piper wallichii extract (PE) and the petroleum ether fraction (PPF) activated autophagy in C. elegans, as evidenced by increased GFP-tagged LGG-1 foci and decreased GFP-p62 expression. In addition, PPF extended the lifespan and enhanced the healthspan of worms by increasing body bends and pumping rates, decreasing lipofuscin accumulation, and increasing resistance to oxidative, heat, and pathogenic stress. Moreover, PPF exhibited an anti-AD effect by decreasing the paralysis rate, improving the pumping rate and slowing rate, and alleviating Aß and Tau pathology in AD worms. However, the feeding of RNAi bacteria targeting unc-51, bec-1, lgg-1, and vps-34 abolished the antiaging and anti-AD effects of PPF. CONCLUSION: Piper wallichii may be a promising drug for antiaging and anti-AD. More future studies are also needed to identify autophagy inducers in Piper wallichii and clarify their molecular mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lipofuscina/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Longevidad , Péptidos beta-Amiloides/metabolismo , Parálisis , Autofagia , Estrés Oxidativo
18.
J Cell Sci ; 123(Pt 17): 2901-13, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20682636

RESUMEN

Tumor metastasis might be evoked in response to microenvironmental stress, such as a shortage of oxygen. Although the cellular response to hypoxia has been well established, we know little about how tumors adapt themselves to deprivation of growth factor. Protein kinase Cdelta (PKCdelta), a stress-sensitive protein kinase, has been implicated in tumor progression. In this study, we demonstrate that elevated expression of PKCdelta in Madin-Darby canine kidney cells induces a scatter response upon serum starvation, a condition that mimics growth-factor deprivation. Serum starvation stimulates the catalytic activity and Y311 phosphorylation of PKCdelta through reactive oxygen species (ROS) and the Src family kinases. Mutation of PKCdelta at Y311 and Y322, both of which are phosphorylation sites for Src, impairs its activation and ability to promote cell scattering upon serum deprivation. Once activated by ROS, PKCdelta itself activates ROS production at least partially through NADPH oxidase. In addition, the c-Jun N-terminal kinase is identified as a crucial downstream mediator of ROS and PKCdelta for induction of cell scattering upon serum deprivation. We demonstrate that the C1B domain of PKCdelta is essential not only for its localization at the Golgi complex, but also for its activation and ability to induce cell scattering upon serum deprivation. Finally, depletion of PKCdelta in human bladder carcinoma T24 cells restores their cell-cell contacts, which thereby reverses a scattered growth pattern to an epithelial-like growth pattern. Collectively, our results suggest that elevated expression of PKCdelta might facilitate the scattering of cells in order to escape stress induced by growth-factor deprivation.


Asunto(s)
Comunicación Celular/fisiología , Proteína Quinasa C-delta/metabolismo , Animales , Línea Celular , Medio de Cultivo Libre de Suero , Perros , Aparato de Golgi/enzimología , Humanos , Riñón/citología , Riñón/enzimología , MAP Quinasa Quinasa 4/metabolismo , NADPH Oxidasas/metabolismo , Fosforilación , Proteína Quinasa C-delta/biosíntesis , Proteína Quinasa C-delta/deficiencia , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Vejiga Urinaria/enzimología , Neoplasias de la Vejiga Urinaria/patología , Familia-src Quinasas/metabolismo
19.
Front Immunol ; 13: 982196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341387

RESUMEN

Cholangiocarcinoma (CCA) is the second most common primary liver malignancy and carries a dismal prognosis due to difficulties in achieving an optimal resection, and poor response to current standard-of-care systemic therapies. We previously devised a CTLA4-PD-L1 DNA cancer vaccine (DNA vaccine) and demonstrated its therapeutic effects on reducing tumor growth in a thioacetamide (TAA)-induced rat intrahepatic CCA (iCCA) model. Here, we developed a CTLA4-PD-L1 chimeric protein vaccine (Protein vaccine), and examined its effects in the rat iCCA model. In a therapeutic setting, iCCA-bearing rats received either DNA plus Protein vaccines or Protein vaccine alone, resulting in increased PD-L1 and CTLA-4 antibody titers, and reduced iCCA tumor burden as verified by animal positron emission tomography (PET) scans. Treating iCCA-bearing rats with Protein vaccine alone led to the increase of CTAL4 antibody titers that correlated with the decrease of tumor SUV ratio, indicating regressed tumor burden, along with increased <i>CD8</i> and granzyme A (<i>GZMA</i>) expression, and decreased PD-L1 expression on tumor cells. In a preventive setting, DNA or Protein vaccines were injected in rats before the induction of iCCA by TAA. Protein vaccines induced a more sustained PD-L1 and CTLA-4 antibody titers compared with DNA vaccines, and was more potent in preventing iCCA tumorigenesis. Correspondingly, Protein vaccines, but not DNA vaccines, downregulated PD-L1 gene expression and hindered the carcinogenesis of iCCA. Taken together, the CTLA4-PD-L1 chimeric protein vaccine may function both as a therapeutic cancer vaccine and as a preventive cancer vaccine in the TAA-induced iCCA rat model.


Asunto(s)
Neoplasias de los Conductos Biliares , Vacunas contra el Cáncer , Colangiocarcinoma , Animales , Ratas , Antígeno CTLA-4/genética , Antígeno B7-H1 , Proteínas de Punto de Control Inmunitario , Colangiocarcinoma/genética , Colangiocarcinoma/prevención & control , Colangiocarcinoma/metabolismo , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Tioacetamida , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/prevención & control , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Proteínas Recombinantes de Fusión
20.
Front Oncol ; 12: 872202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965531

RESUMEN

KIT and PDGFRA play a major role in the oncogenic process in gastrointestinal stroma tumors (GIST) and small molecules have been employed with great success to target the KIT and PDGFRA pathways in this cancer. However, approximately 10% of patients with GIST are resistant to current targeted drug therapy. There is a need to explore other potential targets. Although p53 alterations frequently occur in most cancers, studies regarding p53 in GIST have been limited. The CDKN2A/MDM2/p53 axis regulates cell cycle progression and DNA damage responses, which in turn control tumor growth. This axis is the major event required for transformation from low- to high-risk GIST. Generally, p53 mutation is infrequent in GIST, but p53 overexpression has been reported to be associated with high-risk GIST and unfavorable prognosis, implying that p53 should play a critical role in GIST. Also, Wee1 regulates the cell cycle and the antitumor activity of Wee1 inhibition was reported to be p53 mutant dependent. In addition, Wee1 was reported to have potential activity in GIST through the regulation of KIT protein and this mechanism may be dependent on p53 status. In this article, we review previous reports regarding the role of p53 in GIST and propose targeting the p53 pathway as a novel additional treatment strategy for GIST.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA