Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Epilepsia ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990082

RESUMEN

Delineation of seizure onset regions using intracranial electroencephalography (icEEG) is vital in the surgical workup of drug-resistant epilepsy cases. However, it is unknown whether the complete resection of these regions is necessary for seizure freedom, or whether postsurgical seizure recurrence can be attributed to the incomplete removal of seizure onset regions. To address this gap, we retrospectively analyzed icEEG recordings from 63 subjects, identifying seizure onset regions visually and algorithmically. We assessed onset region resection and correlated this with postsurgical seizure control. The majority of subjects had more than half of their onset regions resected (82.46% and 80.65% of subjects using visual and algorithmic methods, respectively). There was no association between the proportion of the seizure onset zone (SOZ) that was subsequently resected and better surgical outcomes (area under the receiver operating characteristic curve [AUC] < .7). Investigating the spatial extent of onset regions, we found no substantial evidence of an association with postsurgical seizure control (all AUC < .7). Although seizure onset regions are typically resected completely or in large part, incomplete resection is not associated with worse postsurgical outcomes. We conclude that postsurgical seizure recurrence cannot be attributed to an incomplete resection of the icEEG SOZ alone. Other network mechanisms beyond icEEG seizure onset likely contribute.

2.
Epilepsia ; 64(8): 2070-2080, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37226553

RESUMEN

OBJECTIVE: Identifying abnormalities on interictal intracranial electroencephalogram (iEEG), by comparing patient data to a normative map, has shown promise for the localization of epileptogenic tissue and prediction of outcome. The approach typically uses short interictal segments of approximately 1 min. However, the temporal stability of findings has not been established. METHODS: Here, we generated a normative map of iEEG in nonpathological brain tissue from 249 patients. We computed regional band power abnormalities in a separate cohort of 39 patients for the duration of their monitoring period (.92-8.62 days of iEEG data, mean = 4.58 days per patient, >4800 hours recording). To assess the localizing value of band power abnormality, we computed D RS -a measure of how different the surgically resected and spared tissue was in terms of band power abnormalities-over time. RESULTS: In each patient, the D RS value was relatively consistent over time. The median D RS of the entire recording period separated seizure-free (International League Against Epilepsy [ILAE] = 1) and not-seizure-free (ILAE > 1) patients well (area under the curve [AUC] = .69). This effect was similar interictally (AUC = .69) and peri-ictally (AUC = .71). SIGNIFICANCE: Our results suggest that band power abnormality D_RS, as a predictor of outcomes from epilepsy surgery, is a relatively robust metric over time. These findings add further support for abnormality mapping of neurophysiology data during presurgical evaluation.


Asunto(s)
Electrocorticografía , Epilepsia , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Electroencefalografía/métodos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Mapeo Encefálico/métodos
3.
Epilepsia ; 64(4): 1074-1086, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36727552

RESUMEN

OBJECTIVE: Understanding fluctuations in seizure severity within individuals is important for determining treatment outcomes and responses to therapy, as well as assessing novel treatments for epilepsy. Current methods for grading seizure severity rely on qualitative interpretations from patients and clinicians. Quantitative measures of seizure severity would complement existing approaches to electroencephalographic (EEG) monitoring, outcome monitoring, and seizure prediction. Therefore, we developed a library of quantitative EEG markers that assess the spread and intensity of abnormal electrical activity during and after seizures. METHODS: We analyzed intracranial EEG (iEEG) recordings of 1009 seizures from 63 patients. For each seizure, we computed 16 markers of seizure severity that capture the signal magnitude, spread, duration, and postictal suppression of seizures. RESULTS: Quantitative EEG markers of seizure severity distinguished focal versus subclinical seizures across patients. In individual patients, 53% had a moderate to large difference (rank sum r > .3 , p < .05 ) between focal and subclinical seizures in three or more markers. Circadian and longer term changes in severity were found for the majority of patients. SIGNIFICANCE: We demonstrate the feasibility of using quantitative iEEG markers to measure seizure severity. Our quantitative markers distinguish between seizure types and are therefore sensitive to established qualitative differences in seizure severity. Our results also suggest that seizure severity is modulated over different timescales. We envisage that our proposed seizure severity library will be expanded and updated in collaboration with the epilepsy research community to include more measures and modalities.


Asunto(s)
Epilepsias Parciales , Epilepsia , Humanos , Electroencefalografía/métodos , Convulsiones/diagnóstico , Convulsiones/tratamiento farmacológico , Electrocorticografía/métodos
4.
Hum Brain Mapp ; 43(8): 2460-2477, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35119173

RESUMEN

Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and seizure characteristics themselves change over time. Specifically, we recently quantified the variable electrographic spatio-temporal seizure evolutions that exist within individual patients. This variability appears to follow subject-specific circadian, or longer, timescale modulations. It is therefore important to know whether continuously recorded interictaliEEG features can capture signatures of these modulations over different timescales. In this study, we analyse continuous intracranial electroencephalographic (iEEG) recordings from video-telemetry units and find fluctuations in iEEG band power over timescales ranging from minutes up to 12 days. As expected and in agreement with previous studies, we find that all subjects show a circadian fluctuation in their iEEG band power. We additionally detect other fluctuations of similar magnitude on subject-specific timescales. Importantly, we find that a combination of these fluctuations on different timescales can explain changes in seizure evolutions in most subjects above chance level. These results suggest that subject-specific fluctuations in iEEG band power over timescales of minutes to days may serve as markers of seizure modulating processes. We hope that future study can link these detected fluctuations to their biological driver(s). There is a critical need to better understand seizure modulating processes, as this will enable the development of novel treatment strategies that could minimise the seizure spread, duration or severity and therefore the clinical impact of seizures.


Asunto(s)
Electroencefalografía , Epilepsia , Electrocorticografía/métodos , Electroencefalografía/métodos , Humanos , Probabilidad , Convulsiones/diagnóstico
5.
Brain Commun ; 5(5): fcad205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693811

RESUMEN

Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterized the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states. We then compared seizure network state occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. In most patients, the occurrence or duration of at least one seizure network state was associated with the time since implantation. Some patients had one or more seizure network states that were associated with phases of circadian and/or multidien spike rate cycles. A given seizure network state's occurrence and duration were usually not associated with the same timescale. Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a seizure network state's occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures and similar principles likely apply to other neurological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA