Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 4206, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144303

RESUMEN

Changing predator-prey interactions during the Mesozoic Marine Revolution (MMR) profoundly altered the trajectory of marine tetrapod evolution. Here, we assess potential signatures of this landmark transition through the fossil record of skeletal pathologies in ichthyosaurs - iconic marine reptiles that developed increasingly 'fish-like' body plans over time. We surveyed a stratigraphically constrained sample of 200 Middle Triassic ichthyosaur specimens and compared the type, distribution and prevalence of pathologies with an approximately equivalent assemblage of Early Jurassic age. Overall, skeletal pathologies were equally prevalent in these groups, and most often manifested in species >4 m long. However, pathological bones were found to be concentrated in the hind limbs and tail of Triassic ichthyosaurs, whereas the jaws, forelimbs, and ribcage were preferentially affected in Jurassic taxa. We posit that the occurrence of ankylosed zygapophyses in the caudal peak of Triassic ichthyosaurs could represent a functional by-product of their primitive 'eel-like' swimming. Conversely, increased instances of broken ribs in Jurassic ichthyosaurs may infer ramming or tail strike behaviours that characterise morphologically 'fish-like' marine tetrapods, such as modern toothed whales. Different categories of skeletal pathologies thus evidently reflect structural modifications in the ichthyosaur body plan, and indirectly coincide with ecological turnover during the MMR.


Asunto(s)
Evolución Biológica , Fósiles , Esqueleto/patología , Animales , Filogenia , Reptiles
2.
R Soc Open Sci ; 6(7): 190264, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31417732

RESUMEN

Palaeoepidemiological studies related to palaeoecology are rare, but have the potential to provide information regarding ecosystem-level characteristics by measuring individual health. In order to assess factors underlying the prevalence of pathologies in large marine vertebrates, we surveyed ichthyosaurs (Mesozoic marine reptiles) from the Posidonienschiefer Formation (Early Jurassic: Toarcian) of southwestern Germany. This Formation provides a relatively large sample from a geologically and geographically restricted interval, making it ideal for generating baseline data for a palaeoepidemiological survey. We examined the influence of taxon, anatomical region, body size, ontogeny and environmental change, as represented by the early Toarcian Oceanic Anoxic Event, on the prevalence of pathologies, based on a priori ideas of factors influencing population skeletal health. Our results show that the incidence of pathologies is dependent on taxon, with the small-bodied genus Stenopterygius exhibiting fewer skeletal pathologies than other genera. Within Stenopterygius, we detected more pathologies in large adults than in smaller size classes. Stratigraphic horizon, a proxy for palaeoenvironmental change, did not influence the incidence of pathologies in Stenopterygius. The quantification of the occurrence of pathologies within taxa and across guilds is critical to constructing more detailed hypotheses regarding changes in the prevalence of skeletal injury and disease through Earth history.

3.
PLoS One ; 13(10): e0204951, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356279

RESUMEN

Paleopathologies document skeletal damage in extinct organisms and can be used to infer the causes of injury, as well as aspects of related biology, ecology and behavior. To date, few studies have been undertaken on Jurassic marine reptiles, while ichthyosaur pathologies in particular have never been systematically evaluated. Here we survey 41 specimens of the apex predator ichthyosaur Temnodontosaurus from the Early Jurassic of southern Germany in order to document the range and absolute frequency of pathologies observed in this taxon as a function of the number of specimens examined. According to our analysis, most observed pathologies in Temnodontosaurus are force-induced traumas with signs of healing, possibly inflicted during aggressive interactions with conspecifics. When the material is preserved, broken ribs are correlated in most of the cases with traumas elsewhere in the skeleton such as cranial injuries. The range of cranial pathologies in Temnodontosaurus is similar to those reported for extinct cetaceans and mosasaurs, which were interpreted as traces of aggressive encounters. Nevertheless, Temnodontosaurus differs from these other marine amniotes in the absence of pathologies in the vertebral column, consistent with the pattern previously documented in ichthyosaurs. We did not detect any instances of avascular necrosis in Temnodontosaurus from southern Germany, which may reflect a shallow diving life style. This study is intended to provide baseline data for the various types of observed pathologies in large ichthyosaurs occupying the 'apex predator' niche, and potentially clarifies aspects of species-specific behavior relative to other ichthyosaurs and marine amniotes.


Asunto(s)
Huesos/patología , Fósiles , Animales , Anquilosis/patología , Remodelación Ósea , Fracturas Óseas/patología , Alemania , Reptiles , Costillas/patología , Cráneo/patología , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA