Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cancer ; 16(1): 10, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28137309

RESUMEN

Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been implicated in IR-induced EMT, via activation of several EMT transcription factors-including Snail, HIF-1, ZEB1, and STAT3-that are activated by signalling pathways, including those of TGF-ß, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment (TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance; targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME. We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.


Asunto(s)
Transición Epitelial-Mesenquimal , Células Madre Neoplásicas/efectos de la radiación , Tolerancia a Radiación , Desdiferenciación Celular , Humanos , Metástasis de la Neoplasia , Neoplasias , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
2.
Mol Cancer ; 10: 113, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21917150

RESUMEN

BACKGROUND: In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1), and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood. RESULTS: In the present study, we show that Distal-less 2 (Dlx-2), a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS) in response to glucose deprivation (GD), one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an in vitro model of solid tumors. Dlx-2 short hairpin RNA (shRNA) inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH) release, indicating the important role(s) of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis. CONCLUSIONS: These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.


Asunto(s)
Antígenos de Superficie/metabolismo , Neoplasias/metabolismo , Estrés Fisiológico , Antígenos de Superficie/genética , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Agregación Celular , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosa/deficiencia , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Necrosis , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Permeabilidad , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Acetato de Tetradecanoilforbol/farmacología
3.
Mol Med Rep ; 20(3): 2339-2346, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31322179

RESUMEN

Reactive oxygen species (ROS) are important cellular second messengers involved in various aspects of cell signaling. ROS are elevated in multiple types of cancer cells, and this elevation is known to be involved in pathological processes of cancer. Although high levels of ROS exert cytotoxic effects on cancer cells, low levels of ROS stimulate cell proliferation and survival by inducing several pro­survival signaling pathways. In addition, ROS have been shown to induce epithelial­mesenchymal transition (EMT), which is essential for the initiation of metastasis. However, the precise mechanism of ROS­induced EMT remains to be elucidated. In the present study, it was indicated that ROS induce EMT by activating Snail expression, which then represses E­cadherin expression in MCF­7 cells. It was further indicated that distal­less homeobox­2 (Dlx­2), one of the human Dlx gene family proteins involved in embryonic development, acts as an upstream regulator of ROS­induced Snail expression. It was also revealed that ROS treatment induces the glycolytic switch, a phenomenon whereby cancer cells primarily rely on glycolysis instead of mitochondrial oxidative phosphorylation for ATP production, even in the presence of oxygen. In addition, ROS inhibited oxidative phosphorylation and caused cytochrome c oxidase inhibition via the Dlx­2/Snail cascade. These results suggest that ROS induce EMT, the glycolytic switch and mitochondrial repression by activating the Dlx­2/Snail axis, thereby playing crucial roles in MCF­7 cancer cell progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal , Proteínas de Homeodominio/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/metabolismo , Femenino , Glucólisis , Humanos , Células MCF-7 , Transducción de Señal
4.
Exp Mol Med ; 40(1): 84-91, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18305401

RESUMEN

Many in vivo and in vitro studies have demonstrated the targeted migration of neural stem cells (NSC) to infiltrating brain tumors, including malignant glioma, highlighting a potential therapeutic approach. However, there is not enough information to apply this approach to clinical therapy. The most important things in stem cell therapy for brain tumors involve selecting the appropriate neural progenitor type and optimizing the efficiency of the cell engraftment. By histological analysis using two different live-dyes, human NSCs were shown to migrate away from the transplanted site in the direction of the expanding C6 glioma and to intermix with the tumor bed, especially with the tumor core. This intermixing occurred within 7 days when NSCs were implanted into glioma model. The time course of migratory HB1.F5 with the greatest mobility of three NSC lines was as follows. As early as 3 days after transplantation, several NSCs were found leaving the implant site, primarily approaching microsatellites and frontier cells located near the site of NSC implantation. Through 7 days post-transplantation, massive numbers of NSCs continued to be attracted to and interspersed with C6 glioma, and were finally distributed extensively throughout the whole tumor bed, including the core and penumbra of the tumor mass. However, NSCs appeared to penetrate into the tumor mass very well, whereas normal fibroblast cells could not migrate. These findings strengthen the potential for human NSCs as attractive vehicles to improve therapeutic gene delivery to cancer or glioma if they are optimized to selectively kill neoplastic cells.


Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/citología , Encéfalo/patología , Movimiento Celular , Glioma/patología , Neuronas/citología , Células Madre/citología , Animales , Femenino , Humanos , Ratones , Células 3T3 NIH , Ratas , Ratas Sprague-Dawley
5.
Oxid Med Cell Longev ; 2018: 1027453, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30671168

RESUMEN

Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1α, STAT3, TGF-ß, Wnt, and Akt, regulate oncogenic metabolism. Moreover, p53 induces metabolic change by directly regulating several metabolic enzymes. The collective data indicate the importance of oncogenic metabolism in the regulation of EMT, cell invasion and metastasis, and adoption of the CSC phenotype, which all contribute to malignant transformation and tumor development. In this review, we highlight the oncogenic metabolism as a key regulator of EMT and CSC, which is related with tumor progression involving metastasis and chemoresistance. Targeting oncometabolism might be a promising strategy for the development of effective anticancer therapy.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Humanos , Metástasis de la Neoplasia , Neoplasias/patología , Células Madre Neoplásicas/patología
6.
Oxid Med Cell Longev ; 2018: 3537471, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636841

RESUMEN

Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.


Asunto(s)
Autofagia/fisiología , Muerte Celular/fisiología , Necrosis/metabolismo , Neoplasias/patología , Apoptosis , Progresión de la Enfermedad , Humanos
7.
Oncotarget ; 7(7): 7925-39, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26771232

RESUMEN

Most cancer cells depend on enhanced glucose and glutamine (Gln) metabolism for growth and survival. Oncogenic metabolism provides biosynthetic precursors for nucleotides, lipids, and amino acids; however, its specific roles in tumor progression are largely unknown. We previously showed that distal-less homeobox-2 (Dlx-2), a homeodomain transcription factor involved in embryonic and tumor development, induces glycolytic switch and epithelial-mesenchymal transition (EMT) by inducing Snail expression. Here we show that Dlx-2 also induces the expression of the crucial Gln metabolism enzyme glutaminase (GLS1), which converts Gln to glutamate. TGF-ß and Wnt induced GLS1 expression in a Dlx-2-dependent manner. GLS1 shRNA (shGLS1) suppressed in vivo tumor metastasis and growth. Inhibition of Gln metabolism by shGLS1, Gln deprivation, and Gln metabolism inhibitors (DON, 968 and BPTES) prevented Dlx-2-, TGF-ß-, Wnt-, and Snail-induced EMT and glycolytic switch. Finally, shDlx-2 and Gln metabolism inhibition decreased Snail mRNA levels through p53-dependent upregulation of Snail-targeting microRNAs. These results demonstrate that the Dlx-2/GLS1/Gln metabolism axis is an important regulator of TGF-ß/Wnt-induced, Snail-dependent EMT, metastasis, and glycolytic switch.


Asunto(s)
Transición Epitelial-Mesenquimal , Glutaminasa/metabolismo , Glutamina/metabolismo , Glucólisis/fisiología , Proteínas de Homeodominio/metabolismo , Neoplasias/patología , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Apoptosis , Western Blotting , Proliferación Celular , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Células HeLa , Células Hep G2 , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción de la Familia Snail/antagonistas & inhibidores , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Células Tumorales Cultivadas
8.
Mol Cells ; 19(2): 223-7, 2005 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-15879706

RESUMEN

We have identified TMPRSS6, a novel type 2 transmembrane serine protease. TMPRSS6 possesses all the signature motifs of the family of transmembrane serine proteases (TMPRSSs), including a transmembrane domain, an LDL receptor class A (LDLRA) domain, a scavenger receptor cysteine-rich (SRCR) domain, and a serine protease domain. The substrate specificity of TMPRSS6 is slightly different from those of other TMPRSS family members. Combined with the finding that TMPRSS6 is expressed strongly in the thyroid and weakly in the trachea, this may indicate that TMPRSS6 has a specialized role.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Glándula Tiroides/enzimología , Tráquea/enzimología , Secuencia de Aminoácidos , Clonación Molecular , Exones/genética , Humanos , Intrones/genética , Datos de Secuencia Molecular , Mutación/genética , Estructura Terciaria de Proteína , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores de LDL/química , Receptores de LDL/genética , Receptores Depuradores , Receptores Depuradores de Clase A , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
9.
Int J Mol Med ; 16(5): 841-9, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16211253

RESUMEN

Sodium salicylate, one of anti-inflammatory agents, is known to partially induce the heat shock response: it stimulates the DNA-binding of heat shock factor 1 (HSF1) without inducing heat shock gene expression. Here we show that when C6 glioma cells are recovered from sodium salicylate treatment, they highly induce heat shock protein 72 (HSP72), but not HSP73 and HSP90, demonstrating that salicylate-induced inert HSF1 can be fully activated into a transcriptionally competent form by sodium salicylate recovery (SR)-specific mechanism. Fluorescent analysis using 2',7'-dichlorodihydrofluorescein diacetate revealed that sodium salicylate enhanced reactive oxygen species (ROS) production. N-acetyl-L-cysteine (NAC, a ROS scavenger) completely suppressed SR-induced HSP72 synthesis and HSP72 promoter-driven CAT reporter gene transcription as well as salicylate-induced HSF1-DNA binding, indicating a critical role(s) of ROS in the SR-induced HSP72 gene regulation. We also show that treatment of C6 cells with sodium salicylate activated p38MAPK and inactivated ERK1/2 in a ROS-independent manner and activities of these protein kinases returned during recovery period to the control level. Inhibiting p38MAPK and ERK1/2 with the p38MAPK inhibitors (SB203580 and SB202190) and the MEK1/2 inhibitor (PD98059 and U0126) or with expression of dominant negative p38MAPK and ERK1/2 abolished SR-induced HSP72 synthesis and HSP70 promoter-driven CAT activity. However, sodium salicylate-induced HSF1-DNA binding was not affected by the p38MAPK inhibitor or the MEK1/2 inhibitor. These findings suggest that sodium salicylate partially activates HSF1 via ROS production and p38MAPK activation and the salicylate-induced inert HSF1 can be fully activated into a transcriptionally competent form by the ERK1/2 signaling pathways that are activated independently of ROS during SR.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salicilato de Sodio/farmacología , Factores de Transcripción/metabolismo , Animales , ADN/metabolismo , Glioblastoma , Proteínas HSP90 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Fosforilación , Regiones Promotoras Genéticas , Ratas , Células Tumorales Cultivadas , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Int J Mol Med ; 16(5): 833-9, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16211252

RESUMEN

Salicylate and jasmonates are two different types of plant hormone that play critical roles in plant defense responses against insect herbivores and microbial pathogens, through activating defense genes. These two natural products have been shown to have similar activities in animal cells: the compounds are able to induce cell cycle arrest or apoptosis in a variety of human cancer cells including those of colon, prostate, breast, and leukemia, suggesting the chemicals may potentially be a novel class of anti-cancer drugs. Since sodium salicylate can induce the heat shock response in animals, we examined the effects of jasmonates on the heat shock response in C6 glioma cells. Here, we show that brief exposure to methyl jasmonate (MeJA), but not to jasmonic acid, induces heat shock protein 72 (HSP72), but not HSP73 and HSP90, via heat shock factor I (HSF1) activation in C6 glioma cells without affecting cell viability. Intracellular H2O2 and O2-, and mitochondrial ROS were prominently increased in response to 5 mM MeJA in C6 cells. MeJA-induced HSP72 expression, HSF1 DNA binding, and human HSP70 promoter-driven CAT activity were prevented by N-acetyl-L-cysteine (a general antioxidant), catalase (a specific antioxidant for H2O2), and sodium formate (an inhibitor of OH.), but not by Rac1 dominant negative mutant Rac1N17 and diphenyleneiodonium (a NADPH oxidase inhibitor), indicating that MeJA induces HSP72 expression though HSF1 that is activated via Rac1-NADPH oxidase-independent ROS production pathway. These results suggest that the plant stress hormones share the ability to induce heat shock response in animal cells.


Asunto(s)
Acetatos/farmacología , Antineoplásicos/farmacología , Neoplasias del Sistema Nervioso Central/metabolismo , Ciclopentanos/farmacología , Proteínas de Unión al ADN/metabolismo , Glioblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Neoplasias del Sistema Nervioso Central/genética , Depuradores de Radicales Libres/farmacología , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Factores de Transcripción del Choque Térmico , Humanos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Oxilipinas , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Int J Oncol ; 46(4): 1768-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25651912

RESUMEN

Epithelial-mesenchymal transition (EMT) and oncogenic metabolism (including glycolytic switch) are important for tumor development and progression. Here, we show that Dlx-2, one of distal-less (Dlx) homeobox genes, induces EMT and glycolytic switch by activation of Snail. In addition, it was induced by TGF-ß and Wnt and regulates TGF-ß- and Wnt-induced EMT and glycolytic switch by activating Snail. We also found that TGF-ß/Wnt suppressed cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, in a Dlx-2/Snail-dependent manner. TGF-ß/Wnt appeared to downregulate the expression of various COX subunits including COXVIc, COXVIIa and COXVIIc; among these COX subunits, COXVIc was a common target of TGF-ß, Wnt, Dlx-2 and Snail, indicating that COXVIc downregulation plays an important role(s) in TGF-ß/Wnt-induced COX inhibition. Taken together, our results showed that Dlx-2 is involved in TGF-ß- and Wnt-induced EMT, glycolytic switch, and mitochondrial repression by Snail activation.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Glucólisis , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mitocondrias/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Perros , Femenino , Células HCT116 , Humanos , Células MCF-7 , Células de Riñón Canino Madin Darby , Factores de Transcripción de la Familia Snail , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt
12.
Oncol Rep ; 12(6): 1233-8, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15547743

RESUMEN

Jasmonates are plant lipid derivatives, similar to mammalian eicosanoid, that play a critical role(s) in plant defenses against herbivores and pathogens through up-regulating the expression of defense-related genes. Recently, jasmonates were shown to induce cell cycle arrest or apoptosis in human leukemia, prostate and breast cancer cells, but not in normal lymphocytes, suggesting that the chemicals can be used as a novel class of anti-cancer drugs. In the present study, we examined the molecular mechanism that contributes to methyl jasmonate-induced apoptosis. Herein we show that methyl jasmonate induces apoptosis through induction of Bax/Bcl-XS and activation of caspase-3 via reactive oxygen species production in A549 human lung adenocarcinoma cells.


Asunto(s)
Acetatos/farmacología , Apoptosis/fisiología , Ciclopentanos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Adenocarcinoma/metabolismo , Western Blotting , Caspasa 3 , Caspasas/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Electroforesis en Gel de Poliacrilamida , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Oxilipinas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2 , Proteína bcl-X
13.
Oncol Rep ; 29(2): 669-75, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23152075

RESUMEN

Necrosis is commonly found in the core region of solid tumours due to metabolic stress such as hypoxia and glucose deprivation (GD) resulting from insufficient vascularization. Necrosis promotes tumour growth and development by releasing the tumour-promoting cytokine high mobility group box 1 (HMGB1); however, the molecular mechanism underlying necrotic cell death remains largely unknown. In this study, we show that early growth response 1 (Egr-1) is induced in a reactive oxygen species (ROS)-dependent manner by GD in several cell lines such as A549, MDA-MB-231 and HepG2 cells that exhibit necrosis upon GD. We found that Egr-1 short hairpin RNA (shRNA) prevented GD-induced necrosis and HMGB1 release. Necrosis-inhibiting activity of Egr-1 shRNA was also seen in multicellular tumour spheroids (MTSs), an in vitro tumour model system. In contrast, Egr-1 overexpression appeared to make tumour cells more susceptible to GD-induced necrosis. Finally, Egr-1 shRNA suppressed the growth of MTSs. These findings demonstrate that Egr-1 is implicated in GD-induced necrosis and tumour progression.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína HMGB1/metabolismo , Necrosis/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Perfilación de la Expresión Génica , Glucosa/deficiencia , Células Hep G2 , Humanos , Células MCF-7 , Plásmidos , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Esferoides Celulares , Acetato de Tetradecanoilforbol/farmacología , Transfección
14.
Cancer Res ; 72(14): 3607-17, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22637725

RESUMEN

Wnt signaling plays a critical role in embryonic development, and its deregulation is closely linked to the occurrence of a number of malignant tumors, including breast and colon cancer. The pathway also induces Snail-dependent epithelial-to-mesenchymal transition (EMT), which is responsible for tumor invasion and metastasis. In this study, we show that Wnt suppresses mitochondrial respiration and cytochrome C oxidase (COX) activity by inhibiting the expression of 3 COX subunits, namely, COXVIc, COXVIIa, and COXVIIc. We found that Wnt induced a glycolytic switch via increased glucose consumption and lactate production, with induction of pyruvate carboxylase (PC), a key enzyme of anaplerosis. In addition, Wnt-induced mitochondrial repression and glycolytic switching occurred through the canonical ß-catenin/T-cell factor 4/Snail pathway. Short hairpin RNA-mediated knockdown of E-cadherin, a regulator of EMT, repressed mitochondrial respiration and induced a glycolytic switch via Snail activation, indicating that EMT may contribute to Wnt/Snail regulation of mitochondrial respiration and glucose metabolism. Together, our findings provide a new function for Wnt/Snail signaling in the regulation of mitochondrial respiration (via COX gene expression) and glucose metabolism (via PC gene expression) in tumor growth and progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Glucosa/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Femenino , Humanos , ARN Interferente Pequeño/farmacología , Transducción de Señal , Factores de Transcripción de la Familia Snail , Proteína 2 Similar al Factor de Transcripción 7 , Transfección , beta Catenina/metabolismo
15.
PLoS One ; 6(3): e18000, 2011 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-21448462

RESUMEN

BACKGROUND: Necrosis, a type of cell death accompanied by the rupture of the plasma membrane, promotes tumor progression and aggressiveness by releasing the pro-inflammatory and angiogenic cytokine high mobility group box 1. It is commonly found in the core region of solid tumors due to hypoxia and glucose depletion (GD) resulting from insufficient vascularization. Thus, metabolic stress-induced necrosis has important clinical implications for tumor development; however, its regulatory mechanisms have been poorly investigated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that the transcription factor Snail, a key regulator of epithelial-mesenchymal transition, is induced in a reactive oxygen species (ROS)-dependent manner in both two-dimensional culture of cancer cells, including A549, HepG2, and MDA-MB-231, in response to GD and the inner regions of a multicellular tumor spheroid system, an in vitro model of solid tumors and of human tumors. Snail short hairpin (sh) RNA inhibited metabolic stress-induced necrosis in two-dimensional cell culture and in multicellular tumor spheroid system. Snail shRNA-mediated necrosis inhibition appeared to be linked to its ability to suppress metabolic stress-induced mitochondrial ROS production, loss of mitochondrial membrane potential, and mitochondrial permeability transition, which are the primary events that trigger necrosis. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings demonstrate that Snail is implicated in metabolic stress-induced necrosis, providing a new function for Snail in tumor progression.


Asunto(s)
Necrosis/metabolismo , Necrosis/patología , Estrés Fisiológico , Factores de Transcripción/metabolismo , Hipoxia de la Célula , Glucosa/deficiencia , Humanos , Inmunohistoquímica , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción de la Familia Snail , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Células Tumorales Cultivadas
16.
Int J Oncol ; 36(1): 117-24, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19956840

RESUMEN

In solid tumours, necrosis is commonly found in the core region in response to metabolic stress that results from oxygen and glucose depletion (OGD) due to insufficient vascularization and has been implicated in tumour progression. We have previously shown that metabolic stress due to glucose depletion (GD) induces necrosis and HMGB1 release through mitochondrial ROS production in A549 lung adenocarcinoma cells. In this study, we examined the effects of hypoxia on GD-induced necrosis and show that hypoxia prevented GD-induced mitochondrial ROS production, HMGB1 release, and necrosis and switched the cell death mode to apoptosis that is dependent on caspase-3 and -9. We further found that inhibition of ERK1/2 by U0126 abolished the effects of hypoxia to switch the cell death mode and to suppress mitochondrial ROS production, indicating an important role(s) of the ERK pathway in cell death mode determination. We also found that during OGD-induced apoptosis the prosurvival protein kinase Akt is activated and inhibition of Akt by the phosphoinositide 3-kinase (PI3K) inhibitors LY294002 and wortmannin prevent OGD-induced apoptosis, caspase-3 and -9 activation, and nuclear translocation of AIF and EndoG. Similar inhibitory effects of PI3K inhibitors were observed in A549 cells that underwent apoptosis when treated with GD in the presence of NAC (a general antioxidant) or catalase (a H(2)O(2) scavenger), or in the presence of active PKC by treatment with phorbol-12-myristate-13-acetate, indicating a crucial role(s) of the PI3K-Akt pathway in OGD-indcued apoptosis. In conclusion, our results demonstrate that hypoxia switches GD-induced necrosis to apoptosis and ERK1/2 and PI3K-Akt exert anti-necrotic and pro-apoptotic activities in the cell death, respectively.


Asunto(s)
Adenocarcinoma/patología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Hipoxia , Neoplasias Pulmonares/patología , Necrosis/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno
17.
Int J Oncol ; 37(1): 97-102, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20514401

RESUMEN

Cancer cells in the inner region of avascularized solid tumours experience metabolical stress by hypoxic and glucose depletion (OGD) and are prone to die by necrosis to form a necrotic core, a common feature of solid tumours. Unlike in apoptosis, where the cellular contents remain packed in the apoptotic bodies that are removed by macrophages, necrosis is characterized by cell membrane rupture, and the release of many cellular proteins including tumour promoting cytokine high mobility group box 1 (HMGB1) into the extra-cellular space. Although ROS produced by metabolic stress are known to cause membrane damage leading to the plasma membrane rupture, its molecular mechanism remains unclear. In this study, we show that some cellular proteins including pro-apoptotic molecules p53, caspase-3, and caspase-9 and a pro-autophagic molecule beclin 1 are not released into the extracellular space but rather aggregated in the cytosol during GD-induced necrosis and that the protein aggregation occurs in a ROS-dependent manner. We also found that Snail, the transcription factor that is induced by GD, was not translocated to the nucleus and aggregated in the cytosol. In addition, Snail interference appeared to block metabolic stress-induced protein aggregation, indicating a critical role(s) of Snail in the protein aggregation. These results demonstrate that in metabolically stressed cancer cells, ROS induce a specific set of cellular proteins to form insoluble aggregates that are highly toxic to cells and trigger the necrosis-associated membrane rupture and HMGB1 release to promote tumour progression.


Asunto(s)
Necrosis/etiología , Proteínas/metabolismo , Especies Reactivas de Oxígeno/farmacología , Estrés Fisiológico/fisiología , Respuesta de Proteína Desplegada/fisiología , Precipitación Química , Citosol/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/fisiología , Células Hep G2 , Humanos , Necrosis/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Proteínas/efectos de los fármacos , Factores de Transcripción de la Familia Snail , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
18.
Biochem Pharmacol ; 75(9): 1751-60, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18358453

RESUMEN

Aspirin is used as chemopreventive agents in a variety of human cancer cells including those of colon, lung, breast, and leukemia. Sodium salicylate (NaSal, the natural deacetylated form of aspirin) induced cell cycle arrest and apoptosis in a dose-dependent manner in A549 cells; high dose (20mM) of NaSal-induced apoptosis, whereas low dose (2-10mM) induced cell cycle arrest. We found that NaSal-activated Akt/PKB, ERK1/2, and p38MAPK signal cascades. Twenty micromolar of NaSal-induced apoptotic response of A549 cells was enhanced by the PI3K inhibitors (LY294002 and wortmannin) and in a less extent by the MEK1/2 inhibitors (U0126 and PD98059), whereas it was suppressed by the p38MAPK inhibitor (SB203580). Furthermore, simultaneous inhibition of the Akt/PKB and ERK1/2 signal cascades could lower the dose of NaSal to induce apoptosis to 2mM in A549 lung cancer cells. Similar enhancement was observed in cells treated with 2mM NaSal and 100muM genistein, an inhibitor of receptor tyrosine kinases (RTKs) that are upstream of PI3K and MEK1/2 signaling. We further demonstrated that NAG-1 plays a key role in apoptosis by NaSal-based combined treatment. Collectively, our findings indicate that inhibition of the pro-survival Akt/PKB and ERK1/2 signaling may increase the chemopreventive effects of NaSal and combined treatment of two natural compounds (NaSal and genistein) results in a highly synergistic induction of apoptosis, thereby increasing the chemopreventive effects of NaSal against cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Citocinas/genética , Elafina/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Salicilato de Sodio/farmacología , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Electroforesis en Gel de Poliacrilamida , Inhibidores Enzimáticos/administración & dosificación , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Factor 15 de Diferenciación de Crecimiento , Humanos , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Salicilato de Sodio/administración & dosificación
19.
J Cell Physiol ; 211(2): 371-85, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17309078

RESUMEN

Cells typically die by either apoptosis or necrosis. However, the consequences of apoptosis and necrosis are quite different for a whole organism. In the case of apoptosis, the cell content remains packed in the apoptotic bodies that are removed by macrophages, and thereby inflammation does not occur; during necrosis, the cell membrane is ruptured, and the cytosolic constituents are released into the extracellular space provoking inflammation. Recently, inflammation and necrosis have been suggested to promote tumor growth. We investigated the molecular mechanism underlying cell death in response to glucose depletion (GD), a common characteristic of the tumor microenvironment. GD induced necrosis through production of reactive oxygen species (ROS) in A549 lung carcinoma cells. Inhibition of ROS production by N-acetyl-L-cysteine and catalase prevented necrosis and switched the cell death mode to apoptosis that depends on mitochondrial death pathway involving caspase-9 and caspase-3 activation, indicating a critical role of ROS in determination of GD-induced cell death mode. We demonstrate that protein kinase C-dependent extracellular regulated kinase 1/2 (ERK1/2) activation also switched GD-induced necrosis to apoptosis through inhibition of ROS production possibly by inducing manganese superoxide dismutase (SOD) expression and by preventing GD-induced degradation of copper zinc SOD. Thus, these results suggest that GD-induced cell death mode is determined by the protein kinase C/ERK1/2 signal pathway that regulates MnSOD and CuZnSOD and that these antioxidants may exert their known tumor suppressive activities by inducing necrosis-to-apoptosis switch.


Asunto(s)
Apoptosis , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucosa/deficiencia , Neoplasias Pulmonares/metabolismo , Proteína Quinasa C/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/biosíntesis , Acetilcisteína/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Factor Inductor de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Catalasa/farmacología , Línea Celular Tumoral , Supervivencia Celular , Endodesoxirribonucleasas/metabolismo , Activación Enzimática , Inducción Enzimática , Estabilidad de Enzimas , Proteína HMGB1/metabolismo , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/fisiopatología , Mitocondrias/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Necrosis , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Factores de Tiempo
20.
Bioorg Med Chem Lett ; 14(24): 6071-4, 2004 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-15546732

RESUMEN

We describe a series of potent and selective inhibitors of ADAM12 that were discovered using computational screening of a focused virtual library. The initial structure-based virtual screening selected 64 compounds from a 3D database of 67,062 molecules. Being evaluated by a cell-based ADAM12 activity assay, compounds 5, 11, 14, 16 were further identified as the potent and selective inhibitors of ADAM12 with low nanomolar IC50 values. The mechanism underlying the potency and selectivity of a representative compound, 5, was investigated through molecular docking studies.


Asunto(s)
Proteínas de la Membrana/antagonistas & inhibidores , Metaloendopeptidasas/antagonistas & inhibidores , Inhibidores de Proteasas , Proteínas ADAM , Proteína ADAM12 , Diseño Asistido por Computadora , Evaluación Preclínica de Medicamentos/métodos , Modelos Biológicos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA