Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Biol ; 20(9): e3001830, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36174052

RESUMEN

Neurons lack the ability to regenerate after injury. A new Preregistered Article in PLOS Biology finds that pharmacologically boosting regenerative capacity long after injury in mice, together with an enriched animal environment, promotes axonal and synaptic plasticity.


Asunto(s)
Traumatismos de la Médula Espinal , Médula Espinal , Animales , Axones/fisiología , Ratones , Plasticidad Neuronal/fisiología , Neuronas/fisiología
2.
Angiogenesis ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709389

RESUMEN

BACKGROUND: Retinopathy of prematurity (ROP), which often presents with bronchopulmonary dysplasia (BPD), is among the most common morbidities affecting extremely premature infants and is a leading cause of severe vision impairment in children worldwide. Activations of the inflammasome cascade and microglia have been implicated in playing a role in the development of both ROP and BPD. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly. Utilizing mouse models of both oxygen-induced retinopathy (OIR) and BPD, this study was designed to test the hypothesis that hyperoxia induces ASC speck formation, which leads to microglial activation and retinopathy, and that inhibition of ASC speck formation by a humanized monoclonal antibody, IC100, directed against ASC, will ameliorate microglial activation and abnormal retinal vascular formation. METHODS: We first tested ASC speck formation in the retina of ASC-citrine reporter mice expressing ASC fusion protein with a C-terminal citrine (fluorescent GFP isoform) using a BPD model that causes both lung and eye injury by exposing newborn mice to room air (RA) or 85% O2 from postnatal day (P) 1 to P14. The retinas were dissected on P14 and retinal flat mounts were used to detect vascular endothelium with AF-594-conjugated isolectin B4 (IB4) and citrine-tagged ASC specks. To assess the effects of IC100 on an OIR model, newborn ASC citrine reporter mice and wildtype mice (C57BL/6 J) were exposed to RA from P1 to P6, then 75% O2 from P7 to P11, and then to RA from P12 to P18. At P12 mice were randomized to the following groups: RA with placebo PBS (RA-PBS), O2 with PBS (O2-PBS), O2 + IC100 intravitreal injection (O2-IC100-IVT), and O2 + IC100 intraperitoneal injection (O2-IC100-IP). Retinal vascularization was evaluated by flat mount staining with IB4. Microglial activation was detected by immunofluorescence staining for allograft inflammatory factor 1 (AIF-1) and CD206. Retinal structure was analyzed on H&E-stained sections, and function was analyzed by pattern electroretinography (PERG). RNA-sequencing (RNA-seq) of the retinas was performed to determine the transcriptional effects of IC100 treatment in OIR. RESULTS: ASC specks were significantly increased in the retinas by hyperoxia exposure and colocalized with the abnormal vasculature in both BPD and OIR models, and this was associated with increased microglial activation. Treatment with IC100-IVT or IC100-IP significantly reduced vaso-obliteration and intravitreal neovascularization. IC100-IVT treatment also reduced retinal microglial activation, restored retinal structure, and improved retinal function. RNA-seq showed that IC100 treatment corrected the induction of genes associated with angiogenesis, leukocyte migration, and VEGF signaling caused by O2. IC100 also corrected the suppression of genes associated with cell junction assembly, neuron projection, and neuron recognition caused by O2. CONCLUSION: These data demonstrate the crucial role of ASC in the pathogenesis of OIR and the efficacy of a humanized therapeutic anti-ASC antibody in treating OIR mice. Thus, this anti-ASC antibody may potentially be considered in diseases associated with oxygen stresses and retinopathy, such as ROP.

3.
Clin Exp Ophthalmol ; 51(6): 627-641, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37317890

RESUMEN

The retinal ganglion cells (RGCs) are the sole output neurons that connect information from the retina to the brain. Optic neuropathies such as glaucoma, trauma, inflammation, ischemia and hereditary optic neuropathy can cause RGC loss and axon damage, and lead to partial or total loss of vision, which is an irreversible process in mammals. The accurate diagnoses of optic neuropathies are crucial for timely treatments to prevent irrevocable RGCs loss. After severe ON damage in optic neuropathies, promoting RGC axon regeneration is vital for restoring vision. Clearance of neuronal debris, decreased intrinsic growth capacity, and the presence of inhibitory factors have been shown to contribute to the failure of post-traumatic CNS regeneration. Here, we review the current understanding of manifestations and treatments of various common optic neuropathies. We also summarise the current known mechanisms of RGC survival and axon regeneration in mammals, including specific intrinsic signalling pathways, key transcription factors, reprogramming genes, inflammation-related regeneration factors, stem cell therapy, and combination therapies. Significant differences in RGC subtypes in survival and regenerative capacity after injury have also been found. Finally, we highlight the developmental states and non-mammalian species that are capable of regenerating RGC axons after injury, and cellular state reprogramming for neural repair.


Asunto(s)
Enfermedades del Nervio Óptico , Traumatismos del Nervio Óptico , Humanos , Animales , Axones , Traumatismos del Nervio Óptico/terapia , Traumatismos del Nervio Óptico/metabolismo , Regeneración Nerviosa/fisiología , Mamíferos
4.
BMC Genomics ; 22(1): 741, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649511

RESUMEN

BACKGROUND: Emerging evidence indicates that long noncoding RNAs (lncRNAs) are important regulators of various biological processes, and their expression can be altered following certain pathological conditions, including central nervous system injury. Retinal ganglion cells (RGCs), whose axons form the optic nerve, are a heterogeneous population of neurons with more than 40 molecularly distinct subtypes in mouse. While most RGCs, including the ON-OFF direction-selective RGCs (ooDSGCs), are vulnerable to axonal injury, a small population of RGCs, including the intrinsically photosensitive RGCs (ipRGCs), are more resilient. RESULTS: By performing systematic analyses on RNA-sequencing data, here we identify lncRNAs that are expressed in ooDSGCs and ipRGCs with and without axonal injury. Our results reveal a repertoire of different classes of lncRNAs, including long intergenic noncoding RNAs and antisense ncRNAs that are differentially expressed between these RGC types. Strikingly, we also found dozens of lncRNAs whose expressions are altered markedly in response to axonal injury, some of which are expressed exclusively in either one of the types. Moreover, analyses into these lncRNAs unraveled their neighboring coding genes, many of which encode transcription factors and signaling molecules, suggesting that these lncRNAs may act in cis to regulate important biological processes in these neurons. Lastly, guilt-by-association analysis showed that lncRNAs are correlated with apoptosis associated genes, suggesting potential roles for these lncRNAs in RGC survival. CONCLUSIONS: Overall, the results of this study reveal RGC type-specific expression of lncRNAs and provide a foundation for future investigation of the function of lncRNAs in regulating neuronal type specification and survival.


Asunto(s)
Traumatismos del Nervio Óptico , ARN Largo no Codificante , Animales , Axones , Ratones , Regeneración Nerviosa , Traumatismos del Nervio Óptico/genética , ARN Largo no Codificante/genética , Células Ganglionares de la Retina
5.
Nature ; 480(7377): 372-5, 2011 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-22056987

RESUMEN

A formidable challenge in neural repair in the adult central nervous system (CNS) is the long distances that regenerating axons often need to travel in order to reconnect with their targets. Thus, a sustained capacity for axon regeneration is critical for achieving functional restoration. Although deletion of either phosphatase and tensin homologue (PTEN), a negative regulator of mammalian target of rapamycin (mTOR), or suppressor of cytokine signalling 3 (SOCS3), a negative regulator of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, in adult retinal ganglion cells (RGCs) individually promoted significant optic nerve regeneration, such regrowth tapered off around 2 weeks after the crush injury. Here we show that, remarkably, simultaneous deletion of both PTEN and SOCS3 enables robust and sustained axon regeneration. We further show that PTEN and SOCS3 regulate two independent pathways that act synergistically to promote enhanced axon regeneration. Gene expression analyses suggest that double deletion not only results in the induction of many growth-related genes, but also allows RGCs to maintain the expression of a repertoire of genes at the physiological level after injury. Our results reveal concurrent activation of mTOR and STAT3 pathways as key for sustaining long-distance axon regeneration in adult CNS, a crucial step towards functional recovery.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Fosfohidrolasa PTEN/deficiencia , Proteínas Supresoras de la Señalización de Citocinas/deficiencia , Animales , Axones/patología , Procesos de Crecimiento Celular/genética , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Nervio Óptico/citología , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/patología , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Fosfohidrolasa PTEN/genética , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética
6.
Eur J Neurosci ; 44(11): 2935-2943, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27564592

RESUMEN

As axon damage and retinal ganglion cell (RGC) loss lead to blindness, therapies that increase RGC survival and axon regrowth have direct clinical relevance. Given that NFκB signaling is critical for neuronal survival and may regulate neurite growth, we investigated the therapeutic potential of NFκB signaling in RGC survival and axon regeneration. Although both NFκB subunits (p65 and p50) are present in RGCs, p65 exists in an inactive (unphosphorylated) state when RGCs are subjected to neurotoxic conditions. In this study, we used a phosphomimetic approach to generate DNA coding for an activated (phosphorylated) p65 (p65mut), then employed an adeno-associated virus serotype 2 (AAV2) to deliver the DNA into RGCs. We tested whether constitutive p65mut expression prevents death and facilitates neurite outgrowth in RGCs subjected to transient retinal ischemia or optic nerve crush (ONC), two models of neurotoxicity. Our data indicate that RGCs treated with AAV2-p65mut displayed a significant increase in survival compared to controls in ONC model (77 ± 7% vs. 25 ± 3%, P-value = 0.0001). We also found protective effect of modified p65 in RGCs of ischemic retinas (55 ± 12% vs. 35 ± 6%), but not to a statistically significant degree (P-value = 0.14). We did not detect a difference in axon regeneration between experimental and control animals after ONC. These findings suggest that increased NFκB signaling in RGCs attenuates retinal damage in animal models of neurodegeneration, but insignificantly impacts axon regeneration.


Asunto(s)
Axones/metabolismo , Regeneración Nerviosa , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción ReIA/genética , Animales , Axones/fisiología , Línea Celular , Células Cultivadas , Dependovirus/genética , Terapia Genética , Ratones , Ratones Endogámicos C57BL , Proyección Neuronal , Traumatismos del Nervio Óptico/terapia , Factor de Transcripción ReIA/metabolismo
7.
J Neurosci ; 34(46): 15347-55, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25392502

RESUMEN

Mammalian target of rapamycin (mTOR) functions as a master sensor of nutrients and energy, and controls protein translation and cell growth. Deletion of phosphatase and tensin homolog (PTEN) in adult CNS neurons promotes regeneration of injured axons in an mTOR-dependent manner. However, others have demonstrated mTOR-independent axon regeneration in different cell types, raising the question of how broadly mTOR regulates axonal regrowth across different systems. Here we define the role of mTOR in promoting collateral sprouting of spared axons, a key axonal remodeling mechanism by which functions are recovered after CNS injury. Using pharmacological inhibition, we demonstrate that mTOR is dispensable for the robust spontaneous sprouting of corticospinal tract axons seen after pyramidotomy in postnatal mice. In contrast, moderate spontaneous axonal sprouting and induced-sprouting seen under different conditions in young adult mice (i.e., PTEN deletion or degradation of chondroitin proteoglycans; CSPGs) are both reduced upon mTOR inhibition. In addition, to further determine the potency of mTOR in promoting sprouting responses, we coinactivate PTEN and CSPGs, and demonstrate that this combination leads to an additive increase in axonal sprouting compared with single treatments. Our findings reveal a developmental switch in mTOR dependency for inducing axonal sprouting, and indicate that PTEN deletion in adult neurons neither recapitulates the regrowth program of postnatal animals, nor is sufficient to completely overcome an inhibitory environment. Accordingly, exploiting mTOR levels by targeting PTEN combined with CSPG degradation represents a promising strategy to promote extensive axonal plasticity in adult mammals.


Asunto(s)
Axones/fisiología , Lesiones Encefálicas/fisiopatología , Regeneración Nerviosa/fisiología , Serina-Treonina Quinasas TOR/fisiología , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Lesiones Encefálicas/patología , Condroitina ABC Liasa/farmacología , Proteoglicanos Tipo Condroitín Sulfato/antagonistas & inhibidores , Proteoglicanos Tipo Condroitín Sulfato/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Regeneración Nerviosa/efectos de los fármacos , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/fisiología , Tractos Piramidales/efectos de los fármacos , Tractos Piramidales/lesiones , Tractos Piramidales/fisiología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
8.
J Neurosci ; 33(34): 13882-7, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23966707

RESUMEN

Injury to the CNS leads to formation of scar tissue, which is important in sealing the lesion and inhibiting axon regeneration. The fibrotic scar that comprises a dense extracellular matrix is thought to originate from meningeal cells surrounding the CNS. However, using transgenic mice, we demonstrate that perivascular collagen1α1 cells are the main source of the cellular composition of the fibrotic scar after contusive spinal cord injury in which the dura remains intact. Using genetic lineage tracing, light sheet fluorescent microscopy, and antigenic profiling, we identify collagen1α1 cells as perivascular fibroblasts that are distinct from pericytes. Our results identify collagen1α1 cells as a novel source of the fibrotic scar after spinal cord injury and shift the focus from the meninges to the vasculature during scar formation.


Asunto(s)
Cicatriz/etiología , Fibroblastos/patología , Pericitos/patología , Traumatismos de la Médula Espinal/complicaciones , Análisis de Varianza , Animales , Antígenos/genética , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Antígenos CD13/metabolismo , Recuento de Células , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Lectinas , Antígenos Comunes de Leucocito , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pericitos/metabolismo , Piperidinas/metabolismo , Proteoglicanos/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Traumatismos de la Médula Espinal/patología , Factores de Tiempo , Uracilo/análogos & derivados , Uracilo/metabolismo
9.
Exp Neurol ; 377: 114810, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38714284

RESUMEN

Most projection neurons, including retinal ganglion cells (RGCs), undergo cell death after axotomy proximal to the cell body. Specific RGC subtypes, such as ON-OFF direction selective RGCs (ooDSGCs) are particularly vulnerable, whereas intrinsically photosensitive RGCs (ipRGCs) exhibit resilience to axonal injury. Through the application of RNA sequencing and fluorescent in situ hybridization, we show that the expression of chloride intracellular channel protein 1 and 4 (Clic1 and Clic4) are highly increased in the ooDSGCs after axonal injury. Toward determining a gene's role in RGCs, we optimized the utility and efficacy of adenovirus associated virus (AAV)-retro expressing short hairpin RNA (shRNA). Injection of AAV2-retro into the superior colliculus results in efficient shRNA expression in RGCs. Incorporating histone H2B gene fused with mGreenLantern results in bright nuclear reporter expression, thereby enhancing single RGC identification and cell quantitation in live retinas. Lastly, we demonstrate that AAV2-retro mediated knockdown of both Clic1 and Clic4 promotes RGC survival after injury. Our findings establish an integrated use of AAV2-retro-shRNA and real-time fundus imaging and reveal CLICs' contribution to RGC death.


Asunto(s)
Muerte Celular , Canales de Cloruro , Dependovirus , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/metabolismo , Dependovirus/genética , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Muerte Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Masculino , ARN Interferente Pequeño/genética
10.
Sci Rep ; 13(1): 143, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599874

RESUMEN

Bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) are among the most common morbidities affecting extremely premature infants who receive oxygen therapy. Many clinical studies indicate that BPD is associated with advanced ROP. However, the mechanistic link between hyperoxia, BPD, and ROP remains to be explored. Gasdermin D (GSDMD) is a key executor of inflammasome-induced pyroptosis and inflammation. Inhibition of GSDMD has been shown to attenuate hyperoxia-induced BPD and brain injury in neonatal mice. The objective of this study was to further define the mechanistic roles of GSDMD in the pathogenesis of hyperoxia-induced BPD and ROP in mouse models. Here we show that global GSDMD knockout (GSDMD-KO) protects against hyperoxia-induced BPD by reducing macrophage infiltration, improving alveolarization and vascular development, and decreasing cell death. In addition, GSDMD deficiency prevented hyperoxia-induced ROP by reducing vasoobliteration and neovascularization, improving thinning of multiple retinal tissue layers, and decreasing microglial activation. RNA sequencing analyses of lungs and retinas showed that similar genes, including those from inflammatory, cell death, tissue remodeling, and tissue and vascular developmental signaling pathways, were induced by hyperoxia and impacted by GSDMD-KO in both models. These data highlight the importance of GSDMD in the pathogenesis of BPD and ROP and suggest that targeting GSDMD may be beneficial in preventing and treating BPD and ROP in premature infants.


Asunto(s)
Displasia Broncopulmonar , Gasderminas , Retinopatía de la Prematuridad , Animales , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Modelos Animales de Enfermedad , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Hipertensión Pulmonar/patología , Pulmón/patología , Proteínas de Unión a Fosfato/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Retinopatía de la Prematuridad/genética , Retinopatía de la Prematuridad/complicaciones , Gasderminas/genética , Gasderminas/metabolismo
11.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36778361

RESUMEN

The superior colliculus (SC) is a sensorimotor structure in the midbrain that integrates input from multiple sensory modalities to initiate motor commands. It undergoes well-characterized steps of circuit assembly during development, rendering the mouse SC a popular model to study establishment and refinement of neural connectivity. Here we performed single nucleus RNA-sequencing analysis of the mouse SC isolated at various developmental time points. Our study provides a transcriptomic landscape of the cell types that comprise the SC across murine development with particular emphasis on neuronal heterogeneity. We used these data to identify Pax7 as a marker for an anatomically homogeneous population of GABAergic neurons. Lastly, we report a repertoire of genes differentially expressed across the different postnatal ages, many of which are known to regulate axon guidance and synapse formation. Our data provide a valuable resource for interrogating the mechanisms of circuit development, and identifying markers for manipulating specific SC neuronal populations and circuits.

12.
Cell Rep ; 42(9): 113037, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37624694

RESUMEN

The superior colliculus (SC) is a sensorimotor structure in the midbrain that integrates input from multiple sensory modalities to initiate motor commands. It undergoes well-characterized steps of circuit assembly during development, rendering the mouse SC a popular model to study establishment of neural connectivity. Here we perform single-nucleus RNA-sequencing analysis of the mouse SC isolated at various developmental time points. Our study provides a transcriptomic landscape of the cell types that comprise the SC across murine development with particular emphasis on neuronal heterogeneity. We report a repertoire of genes differentially expressed across the different postnatal ages, many of which are known to regulate axon guidance and synapse formation. Using these data, we find that Pax7 expression is restricted to a subset of GABAergic neurons. Our data provide a valuable resource for interrogating the mechanisms of circuit development and identifying markers for manipulating specific SC neuronal populations and circuits.


Asunto(s)
Neuronas GABAérgicas , Colículos Superiores , Ratones , Animales , Colículos Superiores/fisiología , Transcriptoma/genética , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN
13.
Front Cell Dev Biol ; 10: 956279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035999

RESUMEN

Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.

14.
Exp Neurol ; 355: 114147, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35738417

RESUMEN

Following injury in the central nervous system, a population of astrocytes occupy the lesion site, form glial bridges and facilitate axon regeneration. These astrocytes originate primarily from resident astrocytes or NG2+ oligodendrocyte progenitor cells. However, the extent to which these cell types give rise to the lesion-filling astrocytes, and whether the astrocytes derived from different cell types contribute similarly to optic nerve regeneration remain unclear. Here we examine the distribution of astrocytes and NG2+ cells in an optic nerve crush model. We show that optic nerve astrocytes partially fill the injury site over time after a crush injury. Viral mediated expression of a growth-promoting factor, ciliary neurotrophic factor (CNTF), in retinal ganglion cells (RGCs) promotes axon regeneration without altering the lesion size or the degree of lesion-filling GFAP+ cells. Strikingly, using inducible NG2CreER driver mice, we found that CNTF overexpression in RGCs increases the occupancy of NG2+ cell-derived astrocytes in the optic nerve lesion. An EdU pulse-chase experiment shows that the increase in NG2 cell-derived astrocytes is not due to an increase in cell proliferation. Lastly, we performed RNA-sequencing on the injured optic nerve and reveal that CNTF overexpression in RGCs results in significant changes in the expression of distinct genes, including those that encode chemokines, growth factor receptors, and immune cell modulators. Even though CNTF-induced axon regeneration has long been recognized, this is the first evidence of this procedure affecting glial cell fate at the optic nerve crush site. We discuss possible implication of these results for axon regeneration.


Asunto(s)
Traumatismos del Nervio Óptico , Traumatismos del Sistema Nervioso , Animales , Astrocitos/metabolismo , Axones/patología , Factor Neurotrófico Ciliar , Citocinas/metabolismo , Ratones , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/metabolismo , Traumatismos del Sistema Nervioso/metabolismo
15.
Adv Protein Chem Struct Biol ; 127: 249-270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34340769

RESUMEN

We present an overview of current state of proteomic approaches as applied to optic nerve regeneration in the historical context of nerve regeneration particularly central nervous system neuronal regeneration. We present outlook pertaining to the optic nerve regeneration proteomics that the latter can extrapolate information from multi-systems level investigations. We present an account of the current need of systems level standardization for comparison of proteome from various models and across different pharmacological or biophysical treatments that promote adult neuron regeneration. We briefly overview the need for deriving knowledge from proteomics and integrating with other omics to obtain greater biological insight into process of adult neuron regeneration in the optic nerve and its potential applicability to other central nervous system neuron regeneration.


Asunto(s)
Modelos Neurológicos , Regeneración Nerviosa , Proteínas del Tejido Nervioso/metabolismo , Nervio Óptico/fisiología , Proteoma/metabolismo , Proteómica , Animales , Humanos
16.
Mol Cell Neurosci ; 41(3): 313-24, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19394427

RESUMEN

Injured adult retinal ganglion cells (RGCs) regrow axons into peripheral nerve (PN) grafted onto cut optic nerve. Survival and regeneration of RGCs is increased by intraocular injections of ciliary neurotrophic factor (CNTF) and axonal regeneration is further enhanced by co-injection of a cyclic AMP analogue (CPT-cAMP). Based on these data, and because cytokine signaling is negatively regulated by suppressor of cytokine signaling (SOCS) proteins, we set out to determine whether CNTF injections increase retinal SOCS expression and whether any changes are attenuated by co-injection with CPT-cAMP. Using quantitative PCR we found increased SOCS1, SOCS2 and SOCS3 mRNA levels at various times after a single CNTF injection. Expression remained high for many days. SOCS protein levels were also increased. In situ hybridization revealed that RGCs express SOCS3 mRNA, and SOCS expression in cultured RGCs was increased by CNTF. Co-injection of CPT-cAMP reduced CNTF induced expression of SOCS1 and SOCS3 mRNA and decreased SOCS3 protein expression. CNTF injection also transiently increased retinal leukemia inhibitory factor (LIF) expression, an effect that was also moderated by CPT-cAMP. We propose that, along with known reparative effects of elevated cAMP on neurons, reducing SOCS upregulation may be an additional way in which cyclic nucleotides augment cytokine-induced regenerative responses in the injured CNS.


Asunto(s)
AMP Cíclico , Citocinas/metabolismo , Regeneración/efectos de los fármacos , Retina/lesiones , Retina/fisiología , Proteínas Supresoras de la Señalización de Citocinas/biosíntesis , Animales , Axones/trasplante , Factor Neurotrófico Ciliar/administración & dosificación , Factor Neurotrófico Ciliar/biosíntesis , Factor Neurotrófico Ciliar/genética , AMP Cíclico/administración & dosificación , AMP Cíclico/análogos & derivados , Expresión Génica/efectos de los fármacos , Interleucina-10/biosíntesis , Interleucina-10/genética , Interleucina-6/biosíntesis , Interleucina-6/genética , Factor Inhibidor de Leucemia/biosíntesis , Factor Inhibidor de Leucemia/genética , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Endogámicas F344 , Retina/efectos de los fármacos , Proteínas Supresoras de la Señalización de Citocinas/genética , Trasplantes
17.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32967889

RESUMEN

Growing axons in the CNS often migrate along specific pathways to reach their targets. During embryonic development, this migration is guided by different types of cell adhesion molecules (CAMs) present on the surface of glial cells or other neurons, including the neural cadherin (NCAD). Axons in the adult CNS can be stimulated to regenerate, and travel long distances. Crucially, however, while a few axons are guided effectively through the injured nerve under certain conditions, most axons never migrate properly. The molecular underpinnings of the variable growth, and the glial CAMs that are responsible for CNS axon regeneration remain unclear. Here we used optic nerve crush to demonstrate that NCAD plays multifaceted functions in facilitating CNS axon regeneration. Astrocyte-specific deletion of NCAD dramatically decreases regeneration induced by phosphatase and tensin homolog (PTEN) ablation in retinal ganglion cells (RGCs). Consistent with NCAD's tendency to act as homodimers, deletion of NCAD in RGCs also reduces regeneration. Deletion of NCAD in astrocytes neither alters RGCs' mammalian target of rapamycin complex 1 (mTORC1) activity nor lesion size, two factors known to affect regeneration. Unexpectedly, however, we find that NCAD deletion in RGCs reduces PTEN-deletion-induced RGC survival. We further show that NCAD deletion, in either astrocytes or RGCs, has negligible effects on the regeneration induced by ciliary neurotrophic factor (CNTF), suggesting that other CAMs are critical under this regenerative condition. Consistent with this notion, CNTF induces expression various integrins known to mediate cell adhesion. Together, our study reveals multilayered functions of NCAD and a molecular basis of variability in guided axon growth.


Asunto(s)
Axones , Cadherinas , Traumatismos del Nervio Óptico , Animales , Ratones Endogámicos C57BL , Regeneración Nerviosa , Células Ganglionares de la Retina
18.
iScience ; 23(2): 100836, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32058951

RESUMEN

Growth cones (GCs) are structures associated with growing neurons. GC membrane expansion, which necessitates protein-lipid interactions, is critical to axonal elongation in development and in adult neuritogenesis. We present a multi-omic analysis that integrates proteomics and lipidomics data for the identification of GC pathways, cell phenotypes, and lipid-protein interactions, with an analytic platform to facilitate the visualization of these data. We combine lipidomic data from GC and adult axonal regeneration following optic nerve crush. Our results reveal significant molecular variability in GCs across developmental ages that aligns with the upregulation and downregulation of lipid metabolic processes and correlates with distinct changes in the lipid composition of GC plasmalemma. We find that these processes also define the transition into a growth-permissive state in the adult central nervous system. The insight derived from these analyses will aid in promoting adult regeneration and functional innervation in devastating neurodegenerative diseases.

19.
Neuron ; 103(4): 642-657.e7, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31255486

RESUMEN

Neuronal subtypes show diverse injury responses, but the molecular underpinnings remain elusive. Using transgenic mice that allow reliable visualization of axonal fate, we demonstrate that intrinsically photosensitive retinal ganglion cells (ipRGCs) are both resilient to cell death and highly regenerative. Using RNA sequencing (RNA-seq), we show genes that are differentially expressed in ipRGCs and that associate with their survival and axon regeneration. Strikingly, thrombospondin-1 (Thbs1) ranked as the most differentially expressed gene, along with the well-documented injury-response genes Atf3 and Jun. THBS1 knockdown in RGCs eliminated axon regeneration. Conversely, RGC overexpression of THBS1 enhanced regeneration in both ipRGCs and non-ipRGCs, an effect that was dependent on syndecan-1, a known THBS1-binding protein. All structural domains of the THBS1 were not equally effective; the trimerization and C-terminal domains promoted regeneration, while the THBS type-1 repeats were dispensable. Our results identify cell-type-specific induction of Thbs1 as a novel gene conferring high regenerative capacity.


Asunto(s)
Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/fisiología , Trombospondina 1/fisiología , Animales , Apoptosis , Axones/metabolismo , Línea Celular , Femenino , Perfilación de la Expresión Génica , Genes Reporteros , Factor I del Crecimiento Similar a la Insulina/deficiencia , Factor I del Crecimiento Similar a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Compresión Nerviosa , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/fisiopatología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Opsinas de Bastones/deficiencia , Opsinas de Bastones/fisiología , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/fisiología , Trombospondina 1/biosíntesis , Trombospondina 1/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA