Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 603(7903): 934-941, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35130560

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) and other H3K27M-mutated diffuse midline gliomas (DMGs) are universally lethal paediatric tumours of the central nervous system1. We have previously shown that the disialoganglioside GD2 is highly expressed on H3K27M-mutated glioma cells and have demonstrated promising preclinical efficacy of GD2-directed chimeric antigen receptor (CAR) T cells2, providing the rationale for a first-in-human phase I clinical trial (NCT04196413). Because CAR T cell-induced brainstem inflammation can result in obstructive hydrocephalus, increased intracranial pressure and dangerous tissue shifts, neurocritical care precautions were incorporated. Here we present the clinical experience from the first four patients with H3K27M-mutated DIPG or spinal cord DMG treated with GD2-CAR T cells at dose level 1 (1 × 106 GD2-CAR T cells per kg administered intravenously). Patients who exhibited clinical benefit were eligible for subsequent GD2-CAR T cell infusions administered intracerebroventricularly3. Toxicity was largely related to the location of the tumour and was reversible with intensive supportive care. On-target, off-tumour toxicity was not observed. Three of four patients exhibited clinical and radiographic improvement. Pro-inflammatory cytokine levels were increased in the plasma and cerebrospinal fluid. Transcriptomic analyses of 65,598 single cells from CAR T cell products and cerebrospinal fluid elucidate heterogeneity in response between participants and administration routes. These early results underscore the promise of this therapeutic approach for patients with H3K27M-mutated DIPG or spinal cord DMG.


Asunto(s)
Astrocitoma , Neoplasias del Tronco Encefálico , Gangliósidos , Glioma , Histonas , Inmunoterapia Adoptiva , Mutación , Receptores Quiméricos de Antígenos , Astrocitoma/genética , Astrocitoma/inmunología , Astrocitoma/patología , Astrocitoma/terapia , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/inmunología , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/terapia , Niño , Gangliósidos/inmunología , Perfilación de la Expresión Génica , Glioma/genética , Glioma/inmunología , Glioma/patología , Glioma/terapia , Histonas/genética , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Neoplasias de la Médula Espinal/genética , Neoplasias de la Médula Espinal/inmunología , Neoplasias de la Médula Espinal/patología , Neoplasias de la Médula Espinal/terapia
2.
Mol Cancer ; 22(1): 100, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365642

RESUMEN

BACKGROUND: Chimeric Antigen Receptor (CAR) T cells are now standard of care (SOC) for some patients with B cell and plasma cell malignancies and could disrupt the therapeutic landscape of solid tumors. However, access to CAR-T cells is not adequate to meet clinical needs, in part due to high cost and long lead times for manufacturing clinical grade virus. Non-viral site directed CAR integration can be accomplished using CRISPR/Cas9 and double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) via homology-directed repair (HDR), however yields with this approach have been limiting for clinical application (dsDNA) or access to large yields sufficient to meet the manufacturing demands outside early phase clinical trials is limited (ssDNA). METHODS: We applied homology-independent targeted insertion (HITI) or HDR using CRISPR/Cas9 and nanoplasmid DNA to insert an anti-GD2 CAR into the T cell receptor alpha constant (TRAC) locus and compared both targeted insertion strategies in our system. Next, we optimized post-HITI CRISPR EnrichMENT (CEMENT) to seamlessly integrate it into a 14-day process and compared our knock-in with viral transduced anti-GD2 CAR-T cells. Finally, we explored the off-target genomic toxicity of our genomic engineering approach. RESULTS: Here, we show that site directed CAR integration utilizing nanoplasmid DNA delivered via HITI provides high cell yields and highly functional cells. CEMENT enriched CAR T cells to approximately 80% purity, resulting in therapeutically relevant dose ranges of 5.5 × 108-3.6 × 109 CAR + T cells. CRISPR knock-in CAR-T cells were functionally comparable with viral transduced anti-GD2 CAR-T cells and did not show any evidence of off-target genomic toxicity. CONCLUSIONS: Our work provides a novel platform to perform guided CAR insertion into primary human T-cells using nanoplasmid DNA and holds the potential to increase access to CAR-T cell therapies.


Asunto(s)
ADN , Linfocitos T , Humanos , Reparación del ADN por Recombinación , Inmunoterapia Adoptiva
3.
Blood ; 137(17): 2321-2325, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33512414

RESUMEN

The prognosis of patients with large B-cell lymphoma (LBCL) that progresses after treatment with chimeric antigen receptor (CAR) T-cell therapy targeting CD19 (CAR19) is poor. We report on the first 3 consecutive patients with autologous CAR19-refractory LBCL who were treated with a single infusion of autologous 1 × 106 CAR+ T cells per kilogram targeting CD22 (CAR22) as part of a phase 1 dose-escalation study. CAR22 therapy was relatively well tolerated, without any observed nonhematologic adverse events higher than grade 2. After infusion, all 3 patients achieved complete remission, with all responses continuing at the time of last follow-up (mean, 7.8 months; range, 6-9.3). Circulating CAR22 cells demonstrated robust expansion (peak range, 85.4-350 cells per microliter), and persisted beyond 3 months in all patients with continued radiographic responses and corresponding decreases in circulating tumor DNA beyond 6 months after infusion. Further accrual at a higher dose level in this phase 1 dose-escalation study is ongoing and will explore the role of this therapy in patients in whom prior CAR T-cell therapies have failed. This trial is registered on clinicaltrials.gov as #NCT04088890.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Linfoma de Células B Grandes Difuso/terapia , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Ensayos Clínicos Fase I como Asunto , Humanos , Linfoma de Células B Grandes Difuso/inmunología , Linfoma de Células B Grandes Difuso/patología , Pronóstico , Inducción de Remisión
4.
Mol Ther ; 26(6): 1435-1446, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29724686

RESUMEN

The Berlin Patient represents the first and only functional HIV cure achieved by hematopoietic stem cell transplant (HSCT). In subsequent efforts to replicate this result, HIV rebounded post-HSCT after withdrawal of antiretroviral therapy. Providing HIV-specific immunity through adoptive T cell therapy may prevent HIV rebound post-HSCT by eliminating newly infected cells before they can seed systemic infection. Adoptive T cell therapy has demonstrated success in boosting Epstein-Barr virus and cytomegalovirus-specific immunity post-HSCT, controlling viral reactivation. However, T cell immunotherapies to boost HIV-specific immunity have been limited by single-epitope specificity and minimal persistence or efficacy in vivo. To improve this strategy, we sought to generate allogeneic HIV-specific T cells from human leukocyte antigen (HLA)-A02+ HIV-negative adult or cord blood donors. We focused on HLA-A02+ donors due to well-characterized epitope restrictions observed in HIV+ populations. We show that multi-antigen HIV-specific T cells can be generated from naive T cells of both cord blood and adults using a reproducible good manufacturing practice (GMP)-grade protocol. This product lysed antigen-pulsed targets and suppressed active HIV in vitro. Interestingly, these cells displayed broad epitope recognition despite lacking recognition of the common HLA-A02-restricted HIV epitope Gag SL9. This first demonstration of functional multi-antigen HIV-specific T cells has implications for improving treatment of HIV through allogeneic HSCT.


Asunto(s)
VIH-1/inmunología , Linfocitos T/inmunología , Aloinjertos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Citomegalovirus/inmunología , Mapeo Epitopo , Epítopos/inmunología , Citometría de Flujo , Humanos , Inmunoterapia Adoptiva , Linfocitos T/metabolismo
5.
Mol Ther ; 26(10): 2496-2506, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30249388

RESUMEN

Adoptive T cell therapy has had dramatic successes in the treatment of virus-related malignancies and infections following hematopoietic stem cell transplantation. We adapted this method to produce ex vivo expanded HIV-specific T cells (HXTCs), with the long-term goal of using HXTCs as part of strategies to clear persistent HIV infection. In this phase 1 proof-of-concept study (NCT02208167), we administered HXTCs to antiretroviral therapy (ART)-suppressed, HIV-infected participants. Participants received two infusions of 2 × 107 cells/m2 HXTCs at a 2-week interval. Leukapheresis was performed at baseline and 12 weeks post-infusion to measure the frequency of resting cell infection by the quantitative viral outgrowth assay (QVOA). Overall, participants tolerated HXTCs, with only grade 1 adverse events (AEs) related to HXTCs. Two of six participants exhibited a detectable increase in CD8 T cell-mediated antiviral activity following the two infusions in some, but not all, assays. As expected, however, in the absence of a latency reversing agent, no meaningful decline in the frequency of resting CD4 T cell infection was detected. HXTC therapy in ART-suppressed, HIV-infected individuals appears safe and well tolerated, without any clinical signs of immune activation, likely due to the low residual HIV antigen burden present during ART.


Asunto(s)
Terapia Antirretroviral Altamente Activa/métodos , Tratamiento Basado en Trasplante de Células y Tejidos , Infecciones por VIH/terapia , Linfocitos T/trasplante , Adulto , Anciano , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Terapia Genética , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Masculino , Persona de Mediana Edad , Linfocitos T/inmunología , Activación Viral/genética , Activación Viral/inmunología , Replicación Viral/genética , Replicación Viral/inmunología
6.
Biol Blood Marrow Transplant ; 22(3): 536-41, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26721209

RESUMEN

Allogeneic hematopoietic stem cell transplantation (HSCT) can potentially cure human immunodeficiency virus (HIV) by eliminating infected recipient cells, particularly in the context of technologies that may confer HIV resistance to these stem cells. But, to date, the Berlin patient remains the only case of HIV cure despite multiple attempts to eradicate infection with HSCT. One approach to improve this is to administer virus-specific T cells, a strategy that has proven success in preventing other infections after transplantation. Although we have reported that broadly HIV-specific T cells can be expanded from HIV+ patients, allogeneic transplantations only contain virus-naïve T cells. Modifying this approach for the allogeneic setting requires a robust, reproducible platform that can expand HIV-specific cells from the naïve pool. Hence, we hypothesized that HIV-specific T cells could be primed ex vivo from seronegative individuals to effectively target HIV. Here, we show that ex vivo-primed and expanded HIV-specific T cells released IFNγ in response to HIV antigens and that these cells have enhanced ability to suppress replication in vitro. This is the first demonstration of ex vivo priming and expansion of functional, multi-HIV antigen-specific T cells from HIV-negative donors, which has implications for use of allogeneic HSCT as a functional HIV cure.


Asunto(s)
Antígenos Virales/inmunología , Epítopos de Linfocito T/inmunología , VIH-1/inmunología , Trasplante de Células Madre Hematopoyéticas , Transfusión de Linfocitos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología , Aloinjertos
7.
Cytotherapy ; 18(8): 931-942, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27265874

RESUMEN

Although antiretroviral therapy (ART) has been successful in controlling HIV infection, it does not provide a permanent cure, requires lifelong treatment, and HIV-positive individuals are left with social concerns such as stigma. The recent application of T cells to treat cancer and viral reactivations post-transplant offers a potential strategy to control HIV infection. It is known that naturally occurring HIV-specific T cells can inhibit HIV initially, but this response is not sustained in the majority of people living with HIV. Genetically modifying T cells to target HIV, resist infection, and persist in the immunosuppressive environment found in chronically infected HIV-positive individuals might provide a therapeutic solution for HIV. This review focuses on successful preclinical studies and current clinical strategies using T-cell therapy to control HIV infection and mediate a functional cure solution.


Asunto(s)
Infecciones por VIH/terapia , VIH-1/inmunología , Inmunoterapia Adoptiva , Linfocitos T/trasplante , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/trasplante , Terapia Genética , Humanos , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/tendencias
8.
Cancer Cell ; 42(2): 266-282.e8, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38278150

RESUMEN

Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8+ CAR-T cells express CD39 and CD73, which mediate proximal steps in Ado generation. Here, we sought to enhance CAR-T cell potency by knocking out CD39, CD73, or adenosine receptor 2a (A2aR) but observed only modest effects. In contrast, overexpression of Ado deaminase (ADA-OE), which metabolizes Ado to inosine (INO), induced stemness and enhanced CAR-T functionality. Similarly, CAR-T cell exposure to INO augmented function and induced features of stemness. INO induced profound metabolic reprogramming, diminishing glycolysis, increasing mitochondrial and glycolytic capacity, glutaminolysis and polyamine synthesis, and reprogrammed the epigenome toward greater stemness. Clinical scale manufacturing using INO generated enhanced potency CAR-T cell products meeting criteria for clinical dosing. These results identify INO as a potent modulator of CAR-T cell metabolism and epigenetic stemness programming and deliver an enhanced potency platform for cell manufacturing.


Asunto(s)
Inosina , Linfocitos T , Humanos , Linfocitos T/metabolismo
9.
Biochim Biophys Acta ; 1820(3): 291-317, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21851850

RESUMEN

BACKGROUND: Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. SCOPE OF REVIEW: In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. MAJOR CONCLUSIONS: Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. GENERAL SIGNIFICANCE: The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. This article is part of a Special Issue entitled Transferrins: molecular mechanisms of iron transport and disorders.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/administración & dosificación , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Receptores de Transferrina/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proteínas Portadoras/administración & dosificación , Proteínas Portadoras/metabolismo , Sistemas de Liberación de Medicamentos , Vectores Genéticos , Humanos , Hierro/metabolismo
10.
Front Immunol ; 14: 1188018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207227

RESUMEN

HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells' recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells' predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Vacunas , Animales , Humanos , Macaca mulatta , Linfocitos T CD8-positivos
11.
bioRxiv ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37162847

RESUMEN

Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8+ CAR T cells mediate Ado-induced immunosuppression through CD39/73-dependent Ado production. Knockout of CD39, CD73 or A2aR had modest effects on exhausted CAR T cells, whereas overexpression of Ado deaminase (ADA), which metabolizes Ado to inosine (INO), induced stemness features and potently enhanced functionality. Similarly, and to a greater extent, exposure of CAR T cells to INO augmented CAR T cell function and induced hallmark features of T cell stemness. INO induced a profound metabolic reprogramming, diminishing glycolysis and increasing oxidative phosphorylation, glutaminolysis and polyamine synthesis, and modulated the epigenome toward greater stemness. Clinical scale manufacturing using INO generated enhanced potency CAR T cell products meeting criteria for clinical dosing. These data identify INO as a potent modulator of T cell metabolism and epigenetic stemness programming and deliver a new enhanced potency platform for immune cell manufacturing.

12.
Nat Med ; 28(9): 1860-1871, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36097223

RESUMEN

Approximately 60% of patients with large B cell lymphoma treated with chimeric antigen receptor (CAR) T cell therapies targeting CD19 experience disease progression, and neurotoxicity remains a challenge. Biomarkers associated with resistance and toxicity are limited. In this study, single-cell proteomic profiling of circulating CAR T cells in 32 patients treated with CD19-CAR identified that CD4+Helios+ CAR T cells on day 7 after infusion are associated with progressive disease and less severe neurotoxicity. Deep profiling demonstrated that this population is non-clonal and manifests hallmark features of T regulatory (TReg) cells. Validation cohort analysis upheld the link between higher CAR TReg cells with clinical progression and less severe neurotoxicity. A model combining expansion of this subset with lactate dehydrogenase levels, as a surrogate for tumor burden, was superior for predicting durable clinical response compared to models relying on each feature alone. These data credential CAR TReg cell expansion as a novel biomarker of response and toxicity after CAR T cell therapy and raise the prospect that this subset may regulate CAR T cell responses in humans.


Asunto(s)
Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Antígenos CD19 , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Lactato Deshidrogenasas , Síndromes de Neurotoxicidad/etiología , Proteómica , Receptores de Antígenos de Linfocitos T
13.
J Exp Med ; 218(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33988715

RESUMEN

HIV-specific CD8+ T cells partially control viral replication and delay disease progression, but they rarely provide lasting protection, largely due to immune escape. Here, we show that engrafting mice with memory CD4+ T cells from HIV+ donors uniquely allows for the in vivo evaluation of autologous T cell responses while avoiding graft-versus-host disease and the need for human fetal tissues that limit other models. Treating HIV-infected mice with clinically relevant HIV-specific T cell products resulted in substantial reductions in viremia. In vivo activity was significantly enhanced when T cells were engineered with surface-conjugated nanogels carrying an IL-15 superagonist, but it was ultimately limited by the pervasive selection of a diverse array of escape mutations, recapitulating patterns seen in humans. By applying mathematical modeling, we show that the kinetics of the CD8+ T cell response have a profound impact on the emergence and persistence of escape mutations. This "participant-derived xenograft" model of HIV provides a powerful tool for studying HIV-specific immunological responses and facilitating the development of effective cell-based therapies.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/inmunología , Xenoinjertos/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células HEK293 , Infecciones por VIH/virología , Xenoinjertos/virología , Humanos , Inmunoterapia/métodos , Interleucina-15/inmunología , Ratones , Mutación/inmunología , Viremia/inmunología , Viremia/virología , Replicación Viral/inmunología
14.
Nat Med ; 27(8): 1419-1431, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34312556

RESUMEN

Despite impressive progress, more than 50% of patients treated with CD19-targeting chimeric antigen receptor T cells (CAR19) experience progressive disease. Ten of 16 patients with large B cell lymphoma (LBCL) with progressive disease after CAR19 treatment had absent or low CD19. Lower surface CD19 density pretreatment was associated with progressive disease. To prevent relapse with CD19- or CD19lo disease, we tested a bispecific CAR targeting CD19 and/or CD22 (CD19-22.BB.z-CAR) in a phase I clinical trial ( NCT03233854 ) of adults with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL) and LBCL. The primary end points were manufacturing feasibility and safety with a secondary efficacy end point. Primary end points were met; 97% of products met protocol-specified dose and no dose-limiting toxicities occurred during dose escalation. In B-ALL (n = 17), 100% of patients responded with 88% minimal residual disease-negative complete remission (CR); in LBCL (n = 21), 62% of patients responded with 29% CR. Relapses were CD19-/lo in 50% (5 out of 10) of patients with B-ALL and 29% (4 out of 14) of patients with LBCL but were not associated with CD22-/lo disease. CD19/22-CAR products demonstrated reduced cytokine production when stimulated with CD22 versus CD19. Our results further implicate antigen loss as a major cause of CAR T cell resistance, highlight the challenge of engineering multi-specific CAR T cells with equivalent potency across targets and identify cytokine production as an important quality indicator for CAR T cell potency.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva , Linfoma de Células B/terapia , Lectina 2 Similar a Ig de Unión al Ácido Siálico/inmunología , Adulto , Anciano , Progresión de la Enfermedad , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfoma de Células B/inmunología , Persona de Mediana Edad , Recurrencia
15.
J Immunother Cancer ; 8(2)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32929049

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) therapy and hematopoietic stem cell transplantation (HSCT) are therapeutics for relapsed acute lymphocytic leukemia (ALL) that are increasingly being used in tandem. We identified a non-physiologic CD19+/CD3+ T-cell population in the leukapheresis product of a patient undergoing CAR T-cell manufacturing who previously received a haploidentical HSCT, followed by infusion of a genetically engineered T-cell addback product. We confirm and report the origin of these CD19+/CD3+ T cells that have not previously been described in context of CAR T-cell manufacturing. We additionally interrogate the fate of these CD19-expressing cells as they undergo transduction to express CD19-specific CARs. MAIN BODY: We describe the case of a preteen male with multiply relapsed B-ALL who was treated with sequential cellular therapies. He received an αß T-cell depleted haploidentical HSCT followed by addback of donor-derived T cells genetically modified with a suicide gene for iCaspase9 and truncated CD19 for cell tracking (RivoCel). He relapsed 6 months following HSCT and underwent leukapheresis and CAR T-cell manufacturing. During manufacturing, we identified an aberrant T-cell population dually expressing CD19 and CD3. We hypothesized that these cells were RivoCel cells and confirmed using flow cytometry and PCR that the identified cells were in fact RivoCel cells and were eliminated with iCaspase9 activation. We additionally tracked these cells through CD19-specific CAR transduction and notably did not detect T cells dually positive for CD19 and CD19-directed CARs. The most likely rationale for this is in vitro fratricide of the CD19+ 'artificial' T-cell population by the CD19-specific CAR+ T cells in culture. CONCLUSIONS: We report the identification of CD19+/CD3+ cells in an apheresis product undergoing CAR transduction derived from a patient previously treated with a haploidentical transplant followed by RivoCel addback. We aim to bring attention to this cell phenotype that may be recognized with greater frequency as CAR therapy and engineered αßhaplo-HSCT are increasingly coupled. We additionally suggest consideration towards using alternative markers to CD19 as a synthetic identifier for post-transplant addback products, as CD19-expression on effector T cells may complicate subsequent treatment using CD19-directed therapy.


Asunto(s)
Antígenos CD19/metabolismo , Leucaféresis/métodos , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Niño , Humanos , Masculino
16.
Mol Ther Methods Clin Dev ; 16: 11-20, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-31720305

RESUMEN

Although anti-retroviral therapy (ART) is successful in suppressing HIV-1 replication, HIV latently infected reservoirs are not eliminated, representing a major hurdle in efforts to eradicate the virus. Current strategies to eradicate HIV involve two steps: (1) the reactivation of latently infected cells with latency reversing agents (LRAs) to expose persisting HIV, and (2) the elimination of these cells with immune effectors while continuing ART to prevent reinfection. HIV-specific T cells (HSTs) can kill reactivated HIV-infected cells and are currently being evaluated in early-stage immunotherapy trials. HIV can mutate sequences in T cell epitopes and evade T cell-mediated killing of HIV-infected cells. However, by directing T cells to target multiple conserved, non-escaped HIV epitopes, the opportunity for viral escape can be reduced. Using a good manufacturing practice (GMP)-compliant platform, we manufactured HSTs against non-escape epitope targets (HST-NEETs) from HIV+ and HIV-seronegative donors. HST-NEETs expanded to clinically relevant numbers, lysed autologous antigen-pulsed targets, and showed a polyfunctional pro-inflammatory cytokine response. Notably, HST-NEETs recognized multiple conserved, non-escaped HIV epitopes and their common variants. We propose that HST-NEETs could be used to eliminate reactivated virus from latently infected cells in HIV+ individuals following LRA treatment. Additionally, HST-NEETs derived from HIV-negative individuals could be used post-transplant for HIV+ individuals with hematologic malignancies to augment anti-viral immunity and destroy residual infected cells.

17.
J Clin Invest ; 130(5): 2542-2559, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32027622

RESUMEN

Curing HIV infection will require the elimination of a reservoir of infected CD4+ T cells that persists despite HIV-specific cytotoxic T cell (CTL) responses. Although viral latency is a critical factor in this persistence, recent evidence also suggests a role for intrinsic resistance of reservoir-harboring cells to CTL killing. This resistance may have contributed to negative outcomes of clinical trials, where pharmacologic latency reversal has thus far failed to drive reductions in HIV reservoirs. Through transcriptional profiling, we herein identified overexpression of the prosurvival factor B cell lymphoma 2 (BCL-2) as a distinguishing feature of CD4+ T cells that survived CTL killing. We show that the inducible HIV reservoir was disproportionately present in BCL-2hi subsets in ex vivo CD4+ T cells. Treatment with the BCL-2 antagonist ABT-199 was not sufficient to drive reductions in ex vivo viral reservoirs when tested either alone or with a latency-reversing agent (LRA). However, the triple combination of strong LRAs, HIV-specific T cells, and a BCL-2 antagonist uniquely enabled the depletion of ex vivo viral reservoirs. Our results provide rationale for novel therapeutic approaches targeting HIV cure and, more generally, suggest consideration of BCL-2 antagonism as a means of enhancing CTL immunotherapy in other settings, such as cancer.


Asunto(s)
VIH/inmunología , VIH/patogenicidad , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virología , Adulto , Terapia Antirretroviral Altamente Activa , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Linfocitos T CD4-Positivos/clasificación , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Técnicas de Cocultivo , Terapia Combinada , Citotoxicidad Inmunológica/genética , Reservorios de Enfermedades/virología , Femenino , Perfilación de la Expresión Génica , VIH/fisiología , Infecciones por VIH/inmunología , Infecciones por VIH/terapia , Infecciones por VIH/virología , Humanos , Técnicas In Vitro , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Sulfonamidas/farmacología , Latencia del Virus/efectos de los fármacos
18.
Front Oncol ; 9: 196, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024832

RESUMEN

Background: Chimeric antigen receptor (CAR)-modified T cells have successfully harnessed T cell immunity against malignancies, but they are by no means the only cell therapies in development for cancer. Main Text Summary: Systemic immunity is thought to play a key role in combatting neoplastic disease; in this vein, genetic modifications meant to explore other components of T cell immunity are being evaluated. In addition, other immune cells-from both the innate and adaptive compartments-are in various stages of clinical application. In this review, we focus on these non-CAR T cell immunotherapeutic approaches for malignancy. The first section describes engineering T cells to express non-CAR constructs, and the second section describes other gene-modified cells used to target malignancy. Conclusions: CAR T cell therapies have demonstrated the clinical benefits of harnessing our body's own defenses to combat tumor cells. Similar research is being conducted on lesser known modifications and gene-modified immune cells, which we highlight in this review.

19.
Front Immunol ; 10: 621, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984189

RESUMEN

Mycobacterial Infections can be severe in patients with T-cell deficiency or phagocyte disorders, and treatment is frequently complicated by antimicrobial resistance. Restoration of T-cell immunity via stem cell transplantation facilitates control of mycobacterial infections, but presence of active infections during transplantation is associated with a higher risk of mortality. Adoptive T cell immunotherapy has been successful in targeting viruses, but has not been attempted to treat mycobacterial infections. We sought to expand and characterize mycobacterial-specific T-cells derived from healthy donors in order to determine suitability for adoptive immunotherapy. Mycobacteria-specific T-cells (MSTs) were generated from 10 healthy donors using a rapid ex vivo expansion protocol targeting five known mycobacterial target proteins (AG85B, PPE68, ESXA, ESXB, and ADK). MSTs were compared to T-cells expanded from the same donors using lysate from M. tuberculosis or purified protein derivative from M. avium (sensitin). MST expansion from seven patients with primary immunodeficiency disorders (PID) and two patients with IFN-γ autoantibodies and invasive M. avium infections. MSTs expanded from healthy donors recognized a median of 3 of 5 antigens, with production of IFN-γ, TNF, and GM-CSF in CD4+ T cells. Comparison of donors who received BCG vaccine (n = 6) to those who did not (n = 4) showed differential responses to PPE68 (p = 0.028) and ADK (p = 0.015) by IFN-γ ELISpot. MSTs expanded from lysate or sensitin also recognized multiple mycobacterial antigens, with a statistically significant differences noted only in the response to PPE68 (p = 0.016). MSTs expanded from patients with primary immunodeficiency (PID) and invasive mycobacterial infections showed activity against mycobacterial antigens in only two of seven subjects, whereas both patients with IFN-γ autoantibodies recognized mycobacterial antigens. Thus, MSTs can be generated from donors using a rapid expansion protocol regardless of history of BCG immunization. Most tested PID patients had no detectable T-cell immunity to mycobacteria despite history of infection. MSTs may have clinical utility for adoptive immunotherapy in T-cell deficient patients with invasive mycobacterial infections.


Asunto(s)
Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Complejo Mycobacterium avium/inmunología , Infección por Mycobacterium avium-intracellulare/inmunología , Mycobacterium tuberculosis/inmunología , Enfermedades de Inmunodeficiencia Primaria/inmunología , Traslado Adoptivo , Linfocitos T CD4-Positivos/patología , Femenino , Humanos , Masculino , Infección por Mycobacterium avium-intracellulare/patología , Infección por Mycobacterium avium-intracellulare/terapia , Mycobacterium bovis/inmunología , Enfermedades de Inmunodeficiencia Primaria/microbiología , Enfermedades de Inmunodeficiencia Primaria/patología , Enfermedades de Inmunodeficiencia Primaria/terapia
20.
Am Soc Clin Oncol Educ Book ; 38: 592-603, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-30231316

RESUMEN

Immune-based treatment strategies, such as checkpoint inhibition and chimeric antigen receptor (CAR) T cells, have started a new frontier for treatment in non-Hodgkin lymphoma (NHL). Checkpoint inhibition has been most successful in Hodgkin lymphoma, where higher expression of PD-L1 is correlated with better overall response rate. Combinations of checkpoint inhibition with various chemotherapy or biologics are in clinical trials, with initially promising results and manageable safety profiles. CAR T-cell therapies that target CD19 are a promising and attractive therapy for B-cell NHLs, with a product approved by the US Food and Drug Administration in 2017. Changes in the target, hinge, or costimulatory domain can dramatically alter the persistence and efficacy of the CAR T cells. The ZUMA trials from Kite used CD19-(CD28z) CAR T cells, whereas the TRANSCEND studies from Juno and the JULIET studies from Novartis used CD19-(4-1BBz) CARs. Despite the recent successes with CAR T-cell clinical trials, major concerns associated with this therapy include cytokine release syndrome, potential neurotoxicities, B-cell aplasia, loss of tumor antigen leading to relapse, and cost and accessibility of the treatment. Although first-generation CAR T-cell therapies have failed in solid malignancies, newer second- and third-generation CAR T cells that target antigens other than CD19 (such as mesothelin or B-cell maturation antigen) are being studied in clinical trials for treatment of lung cancer or multiple myeloma. Overall, immune-based treatment strategies have given oncologists and patients hope when there used to be none, as well as a new basket of tools yet to come with further research and development.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Inmunoterapia Adoptiva/métodos , Linfoma no Hodgkin/tratamiento farmacológico , Humanos , Linfoma no Hodgkin/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA