Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Glia ; 71(7): 1667-1682, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36949723

RESUMEN

Astrocytes are integral components of brain circuits, where they sense, process, and respond to surrounding activity, maintaining homeostasis and regulating synaptic transmission, the sum of which results in behavior modulation. These interactions are possible due to their complex morphology, composed of a tree-like structure of processes to cover defined territories ramifying in a mesh-like system of fine leaflets unresolved by conventional optic microscopy. While recent reports devoted more attention to leaflets and their dynamic interactions with synapses, our knowledge about the tree-like "backbone" structure in physiological conditions is incomplete. Recent transcriptomic studies described astrocyte molecular diversity, suggesting structural heterogeneity in regions such as the hippocampus, which is crucial for cognitive and emotional behaviors. In this study, we carried out the structural analysis of astrocytes across the hippocampal subfields of Cornu Ammonis area 1 (CA1) and dentate gyrus in the dorsoventral axis. We found that astrocytes display heterogeneity across the hippocampal subfields, which is conserved along the dorsoventral axis. We further found that astrocytes appear to contribute in an exocytosis-dependent manner to a signaling loop that maintains the backbone structure. These findings reveal astrocyte heterogeneity in the hippocampus, which appears to follow layer-specific cues and depend on the neuro-glial environment.


Asunto(s)
Astrocitos , Hipocampo , Animales , Ratones , Astrocitos/fisiología , Región CA1 Hipocampal , Neuroglía , Transmisión Sináptica
2.
Neurobiol Dis ; 173: 105835, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35932989

RESUMEN

Therapies for epilepsy mainly provide symptomatic control of seizures since most of the available drugs do not target disease mechanisms. Moreover, about one-third of patients fail to achieve seizure control. To address the clinical need for disease-modifying therapies, research should focus on targets which permit interventions finely balanced between optimal efficacy and safety. One potential candidate is the brain-specific enzyme cholesterol 24-hydroxylase. This enzyme converts cholesterol to 24S-hydroxycholesterol, a metabolite which among its biological roles modulates neuronal functions relevant for hyperexcitability underlying seizures. To study the role of cholesterol 24-hydroxylase in epileptogenesis, we administered soticlestat (TAK-935/OV935), a potent and selective brain-penetrant inhibitor of the enzyme, during the early disease phase in a mouse model of acquired epilepsy using a clinically relevant dose. During soticlestat treatment, the onset of epilepsy was delayed and the number of ensuing seizures was decreased by about 3-fold compared to vehicle-treated mice, as assessed by EEG monitoring. Notably, the therapeutic effect was maintained 6.5 weeks after drug wash-out when seizure number was reduced by about 4-fold and their duration by 2-fold. Soticlestat-treated mice showed neuroprotection of hippocampal CA1 neurons and hilar mossy cells as assessed by post-mortem brain histology. High throughput RNA-sequencing of hippocampal neurons and glia in mice treated with soticlestat during epileptogenesis showed that inhibition of cholesterol 24-hydroxylase did not directly affect the epileptogenic transcriptional network, but rather modulated a non-overlapping set of genes that might oppose the pathogenic mechanisms of the disease. In human temporal lobe epileptic foci, we determined that cholesterol 24-hydroxylase expression trends higher in neurons, similarly to epileptic mice, while the enzyme is ectopically induced in astrocytes compared to control specimens. Soticlestat reduced significantly the number of spontaneous seizures in chronic epileptic mice when was administered during established epilepsy. Data show that cholesterol 24-hydroxylase contributes to spontaneous seizures and is involved in disease progression, thus it represents a novel target for chronic seizures inhibition and disease-modification therapy in epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Colesterol/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Piperidinas , Piridinas , ARN/metabolismo , Convulsiones/metabolismo
3.
Brain ; 142(7): e39, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31145451

RESUMEN

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Asunto(s)
Acetilcisteína/farmacología , Epilepsia/prevención & control , Glutatión/metabolismo , Isotiocianatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Astrocitos/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Recuento de Células , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/prevención & control , Modelos Animales de Enfermedad , Estimulación Eléctrica , Epilepsia/complicaciones , Proteína HMGB1/sangre , Hipocampo/metabolismo , Humanos , Masculino , Neuronas/metabolismo , Neuronas/patología , Ratas , Estado Epiléptico/complicaciones , Estado Epiléptico/metabolismo , Estado Epiléptico/prevención & control , Sulfóxidos
4.
Neurobiol Dis ; 124: 373-378, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30590177

RESUMEN

The lack of early biomarkers of epileptogenesis precludes a sound prediction of epilepsy development after acute brain injuries and of the natural course of the disease thus impairing the development of antiepileptogenic treatments. We investigated whether the dimensional changes of nonlinear dynamics in EEG/ECoG signals, that were recorded in the early aftermath of different epileptogenic injuries, provide a measure to be exploited as a sensitive prognostic and predictive biomarker for epilepsy. Using three different models of epilepsy in two rodent species, we report a common and significant decrease of nonlinear dynamics dimension in EEG/ECoG tracings during early epileptogenesis. In particular, the magnitude of this dimensional decrease predicts the severity of ensuing epilepsy, and this measure is modulated by disease-modifying or antiepileptogenic treatments. The broad application of EEG/ECoG monitoring in epilepsy underlines the translational value of these findings for enriching the population of patients at risk for developing epilepsy in clinical investigations.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/fisiopatología , Animales , Lesiones Encefálicas/complicaciones , Epilepsia/etiología , Ratones , Dinámicas no Lineales , Ratas , Procesamiento de Señales Asistido por Computador
5.
Epilepsia ; 59(1): 79-91, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29171003

RESUMEN

OBJECTIVE: Status epilepticus (SE) is a life-threatening and commonly drug-refractory condition. Novel therapies are needed to rapidly terminate seizures to prevent mortality and morbidity. Monoacylglycerol lipase (MAGL) is the key enzyme responsible for the hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) and a major contributor to the brain pool of arachidonic acid (AA). Inhibiting of monoacylglycerol lipase modulates synaptic activity and neuroinflammation, 2 mediators of excessive neuronal activation underlying seizures. We studied the effect of a potent and selective irreversible MAGL inhibitor, CPD-4645, on SE that was refractory to diazepam, its neuropathologic sequelae, and the mechanism underlying the drug's effects. METHODS: Diazepam-resistant SE was induced in adult mice fed with standard or ketogenic diet or in cannabinoid receptor type 1 (CB1) receptor knock-out mice. CPD-4645 (10 mg/kg, subcutaneously) or vehicle was dosed 1 and 7 h after status epilepticus onset in video-electroencephalography (EEG) recorded mice. At the end of SE, mice were examined in the novel object recognition test followed by neuronal cellloss analysis. RESULTS: CPD-4645 maximal plasma and brain concentrations were attained 0.5 h postinjection (half-life = 3.7 h) and elevated brain 2-AG levels by approximately 4-fold. CPD-4645 administered to standard diet-fed mice progressively reduced spike frequency during 3 h postinjection, thereby shortening SE duration by 47%. The drug immediately abrogated SE in ketogenic diet-fed mice. CPD-4645 rescued neuronal cell loss and cognitive deficit and reduced interleukin (IL)-1ß and cyclooxygenase 2 (COX-2) brain expression resulting from SE. The CPD-4645 effect on SE was similar in mice lacking CB1 receptors. SIGNIFICANCE: MAGL represents a novel therapeutic target for treating status epilepticus and improving its sequelae. CPD-4645 therapeutic effects appear to be predominantly mediated by modulation of neuroinflammation.


Asunto(s)
Carbamatos/uso terapéutico , Monoacilglicerol Lipasas/antagonistas & inhibidores , Piperidinas/uso terapéutico , Estado Epiléptico , Sulfonamidas/uso terapéutico , Animales , Encéfalo/metabolismo , Encéfalo/patología , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Carbamatos/química , Carbamatos/farmacocinética , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Diazepam/efectos adversos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Epilepsia Refractaria/inducido químicamente , Epilepsia Refractaria/enzimología , Epilepsia Refractaria/terapia , Electroencefalografía , Agonistas de Aminoácidos Excitadores/toxicidad , Fluoresceínas/metabolismo , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Piperidinas/química , Piperidinas/farmacología , Distribución Aleatoria , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética , Reconocimiento en Psicología/efectos de los fármacos , Estado Epiléptico/inducido químicamente , Estado Epiléptico/complicaciones , Estado Epiléptico/enzimología , Estado Epiléptico/terapia , Sulfonamidas/química , Sulfonamidas/farmacocinética , Factores de Tiempo
6.
Brain ; 140(7): 1885-1899, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575153

RESUMEN

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Asunto(s)
Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Epilepsia/tratamiento farmacológico , Dominios HMG-Box/efectos de los fármacos , Proteína HMGB1/sangre , Proteína HMGB1/metabolismo , Isotiocianatos/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Animales , Astrocitos/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Epilepsia/metabolismo , Proteína HMGB1/biosíntesis , Hipocampo/metabolismo , Isotiocianatos/farmacología , Masculino , Degeneración Nerviosa/dietoterapia , Neuronas/metabolismo , Ratas , Sulfóxidos
7.
Pharmacol Res ; 110: 96-100, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27173399

RESUMEN

The definition of the pathologic process of epileptogenesis has considerably changed over the past few years due to a better knowledge of the dynamics of the associated molecular modifications and to clinical and experimental evidence of progression of the epileptic condition beyond the occurrence of the first seizures. Interference with this chronic process may lead to the development of novel preventive therapies which are still lacking. Notably, epileptogenesis is often associated with comorbid behaviors which are now considered primary outcome measures for novel therapeutics. Anti-epileptogenic interventions may improve not only seizure onset and their frequency and severity but also comorbidities and cell loss, and when applied after the onset of the disease may provide disease-modifying effects by favorably modifying the disease course. In the preclinical arena, several novel targets for anti-epileptogenic and disease-modifying interventions are being characterized and validated in rodent models of epileptogenesis. To move proof-of-concept anti-epileptogenesis studies to validation in preclinical trials and eventually to clinical translation is a challenging task which would be greatly facilitated by the development of non invasive biomarkers of epileptogenesis. Biomarker discovery together with testing potential novel drugs would provide a major advance in the treatment of human epilepsy beyond the pure symptomatic control of seizures.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Ondas Encefálicas/efectos de los fármacos , Encéfalo/efectos de los fármacos , Epilepsia/prevención & control , Animales , Antiinflamatorios/uso terapéutico , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Epilepsia/metabolismo , Epilepsia/patología , Epilepsia/fisiopatología , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos
8.
Front Mol Neurosci ; 17: 1404022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873242

RESUMEN

Phagocytes maintain homeostasis in a healthy brain. Upon injury, they are essential for repairing damaged tissue, recruiting other immune cells, and releasing cytokines as the first line of defense. However, there seems to be a delicate balance between the beneficial and detrimental effects of their activation in a seizing brain. Blocking the infiltration of peripheral phagocytes (macrophages) or their depletion can partially alleviate epileptic seizures and prevent the death of neurons in experimental models of epilepsy. However, the depletion of resident phagocytes in the brain (microglia) can aggravate disease outcomes. This review describes the role of resident microglia and peripheral infiltrating monocytes in animal models of acutely triggered seizures and epilepsy. Understanding the roles of phagocytes in ictogenesis and the time course of their activation and involvement in epileptogenesis and disease progression can offer us new biomarkers to identify patients at risk of developing epilepsy after a brain insult, as well as provide novel therapeutic targets for treating epilepsy.

9.
J Vis Exp ; (184)2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35816000

RESUMEN

One of the main causes of epilepsy is an infection of the central nervous system (CNS); approximately 8% of patients who survive such an infection develop epilepsy as a consequence, with rates being significantly higher in less economically developed countries. This work provides an overview of modeling epilepsy of infectious etiology and using it as a platform for novel antiseizure compound testing. A protocol of epilepsy induction by non-stereotactic intracerebral injection of Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6 mice is presented, which replicates many of the early and chronic clinical symptoms of viral encephalitis and subsequent epilepsy in human patients. The clinical evaluation of mice during encephalitis to monitor seizure activity and detect the potential antiseizure effects of novel compounds is described. Furthermore, histopathological consequences of viral encephalitis and seizures such as hippocampal damage and neuroinflammation are shown, as well as long-term consequences such as spontaneous epileptic seizures. The TMEV model is one of the first translational, infection-driven, experimental platforms to allow for the investigation of the mechanisms of epilepsy development as a consequence of CNS infection. Thus, it also serves to identify potential therapeutic targets and compounds for patients at risk of developing epilepsy following a CNS infection.


Asunto(s)
Encefalitis Viral , Epilepsia , Theilovirus , Animales , Modelos Animales de Enfermedad , Epilepsia/etiología , Humanos , Ratones , Ratones Endogámicos C57BL , Convulsiones/diagnóstico , Theilovirus/fisiología
10.
Front Cell Neurosci ; 15: 669280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149361

RESUMEN

The fine processes of single astrocytes can contact many thousands of synapses whose function they can modulate through bi-directional signaling. The spatial arrangement of astrocytic processes and neuronal structures is relevant for such interactions and for the support of neuronal signaling by astrocytes. At the same time, the geometry of perisynaptic astrocyte processes is variable and dynamically regulated. Studying these fine astrocyte processes represents a technical challenge, because many of them cannot be fully resolved by diffraction-limited microscopy. Therefore, we have established two indirect parameters of astrocyte morphology, which, while not fully resolving local geometry by design, provide statistical measures of astrocyte morphology: the fraction of tissue volume that astrocytes occupy and the density of resolvable astrocytic processes. Both are straightforward to obtain using widely available microscopy techniques. We here present the approach and demonstrate its robustness across various experimental conditions using mainly two-photon excitation fluorescence microscopy in acute slices and in vivo as well as modeling. Using these indirect measures allowed us to analyze the morphology of relatively large populations of astrocytes. Doing so we captured the heterogeneity of astrocytes within and between the layers of the hippocampal CA1 region and the developmental profile of astrocyte morphology. This demonstrates that volume fraction (VF) and segment density are useful parameters for describing the structure of astrocytes. They are also suitable for online monitoring of astrocyte morphology with widely available microscopy techniques.

11.
Neuropharmacology ; 167: 107742, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31421074

RESUMEN

Neuroinflammation and reactive oxygen and nitrogen species are rapidly induced in the brain after acute cerebral injuries that are associated with an enhanced risk for epilepsy in humans and related animal models. These phenomena reinforce each others and persist during epileptogenesis as well as during chronic spontaneous seizures. Anti-inflammatory and anti-oxidant drugs transiently administered either before, or shortly after the clinical onset of symptomatic epilepsy, similarly block the progression of spontaneous seizures, and may delay their onset. Moreover, neuroprotection and rescue of cognitive deficits are also observed in the treated animals. Therefore, although these treatments do not prevent epilepsy development, they offer clinically relevant disease-modification effects. These therapeutic effects are mediated by targeting molecular signaling pathways such as the IL-1ß-IL-1 receptor type 1 and TLR4, P2X7 receptors, the transcriptional anti-oxidant factor Nrf2, while the therapeutic impact of COX-2 inhibition for reducing spontaneous seizures remains controversial. Some anti-inflammatory and anti-oxidant drugs that are endowed of disease modification effects in preclinical models are already in medical use and have a safety profile, therefore, they provide potential re-purposed treatments for improving the disease course and for reducing seizure burden. Markers of neuroinflammation and oxidative stress can be measured in blood or by neuroimaging, therefore they represent testable prognostic and predictive biomarkers for selecting the patient's population at high risk for developing epilepsy therefore eligible for novel treatments. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.


Asunto(s)
Antiinflamatorios/uso terapéutico , Anticonvulsivantes/uso terapéutico , Antioxidantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Mediadores de Inflamación/antagonistas & inhibidores , Animales , Antiinflamatorios/farmacología , Anticonvulsivantes/farmacología , Epilepsia/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
12.
Behav Brain Res ; 242: 95-101, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23291156

RESUMEN

Selective attention can be assessed with the novel object recognition (NOR) test. In the standard version of this test the selection of objects to be used is critical. We created a modified version of NOR, the virtual object recognition test (VORT) in mice, where the 3D objects were replaced with highly discriminated geometrical shapes and presented on two 3.5-inch widescreen displays. No difference in the discrimination index (from 5min to 96h of inter-trial) was found between NOR and VORT. Scopolamine and mecamylamine decreased the discrimination index. Conversely, the discrimination index increased when nicotine was given to mice. No further improvement in the discrimination index was observed when nicotine was injected in mice presented with highly discriminable shapes. To test the possibility that object movements increased mice's attention in the VORT, different movements were applied to the same geometrical shapes previously presented. Mice were able to distinguish among different movements (horizontal, vertical, oblique). Notably, the shapes previously found not distinguishable when stationary were better discriminated when moving. Collectively, these findings indicate that VORT, based on virtual geometric simple shapes, offers the possibility to obtain rapid information on amnesic/pro-amnestic potential of new drugs. The introduction of motion is a strong cue that makes the task more valuable to study attention.


Asunto(s)
Atención/fisiología , Aprendizaje Discriminativo/fisiología , Percepción de Movimiento/fisiología , Reconocimiento en Psicología/fisiología , Percepción Espacial/fisiología , Análisis de Varianza , Animales , Atención/efectos de los fármacos , Antagonistas Colinérgicos/farmacología , Aprendizaje Discriminativo/efectos de los fármacos , Masculino , Ratones , Percepción de Movimiento/efectos de los fármacos , Reconocimiento en Psicología/efectos de los fármacos , Escopolamina/farmacología , Percepción Espacial/efectos de los fármacos , Factores de Tiempo , Interfaz Usuario-Computador
13.
Peptides ; 37(2): 327-33, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22828174

RESUMEN

Oxytocin (OT) and arginine-vasopressin (AVP) are involved in the physiological response to different stressors like the occurrence of seizures which is regarded as a severe stress factor. Zebrafish (Danio rerio) is recently featured as a model of epilepsy but the role of neurohypophyseal hormones on this teleost is still unknown. We attempted to determine whether non-mammalian homologues like isotocin (IT) and vasotocin (AVT) affected pentylenetetrazole (PTZ)-induced seizures in adult zebrafish in comparison with OT/AVP. The mechanism was studied using the most selective OT and AVP receptor antagonists. Zebrafish were injected i.m. with increasing doses (0.1-40 ng/kg) of the neuropeptides 10 min before PTZ exposure. DesGly-NH2-d(CH2)5-[D-Tyr2,Thr4]OVT (desglyDTyrOVT) for OT receptor and SR49059 for V1a subtype receptor, were injected together with each agonist 20 min before PTZ exposure. All the peptides significantly decreased the number of seizures, increased the mean latency time to the first seizure and decreased lethality. This protective effect led to a dose-response curve following a U-shaped form. IT was approximately 40 times more active than OT while AVT was 20 times more potent than AVP in reducing the number of seizures. DesglyDTyrOVT was more effective in antagonizing OT/IT, while SR49059 mainly blocked AVP/AVT-induced protection against PTZ-induced seizures. The present findings provide direct evidence of an important involvement of IT/OT and AVP/AVT as anticonvulsant agents against PTZ-induced seizures with a receptor-mediated mechanism in zebrafish. These data reinforce zebrafish as an emerging experimental model to study and identify new antiepileptic drugs.


Asunto(s)
Anticonvulsivantes/farmacología , Antagonistas de los Receptores de Hormonas Antidiuréticas , Hormonas Neurohipofisarias/farmacología , Receptores de Oxitocina/antagonistas & inhibidores , Convulsiones/prevención & control , Pez Cebra/metabolismo , Animales , Anticonvulsivantes/administración & dosificación , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Pentilenotetrazol , Hormonas Neurohipofisarias/administración & dosificación , Receptores de Oxitocina/metabolismo , Receptores de Vasopresinas/metabolismo , Convulsiones/inducido químicamente , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA